Projective rangeIn mathematics, a projective range is a set of points in projective geometry considered in a unified fashion. A projective range may be a projective line or a conic. A projective range is the dual of a pencil of lines on a given point. For instance, a correlation interchanges the points of a projective range with the lines of a pencil. A projectivity is said to act from one range to another, though the two ranges may coincide as sets. A projective range expresses projective invariance of the relation of projective harmonic conjugates.
Projection (mathematics)In mathematics, a projection is an idempotent mapping of a set (or other mathematical structure) into a subset (or sub-structure). In this case, idempotent means that projecting twice is the same as projecting once. The restriction to a subspace of a projection is also called a projection, even if the idempotence property is lost. An everyday example of a projection is the casting of shadows onto a plane (sheet of paper): the projection of a point is its shadow on the sheet of paper, and the projection (shadow) of a point on the sheet of paper is that point itself (idempotency).
CollineationIn projective geometry, a collineation is a one-to-one and onto map (a bijection) from one projective space to another, or from a projective space to itself, such that the of collinear points are themselves collinear. A collineation is thus an isomorphism between projective spaces, or an automorphism from a projective space to itself. Some authors restrict the definition of collineation to the case where it is an automorphism. The set of all collineations of a space to itself form a group, called the collineation group.
Géométrie affinevignette|Géometrie affine La géométrie affine est la géométrie des espaces affines : il s'agit grossièrement d'ensembles de points définis par des propriétés spécifiques permettant de parler d'alignement, de parallélisme, d'intersection. Les notions de longueur et d'angle lui sont toutefois étrangères : elles dépendent de structures supplémentaires, traitées dans le cadre de la géométrie euclidienne. Dissocier les notions propres à la géométrie affine est récent dans l'histoire des mathématiques.
Géométrie synthétiqueLa géométrie synthétique ou géométrie pure est fondée sur une approche axiomatique (donc, « purement logique ») de la géométrie. Elle constitue une branche de la géométrie étudiant diverses propriétés et divers théorèmes uniquement par des méthodes d'intersections, de transformations et de constructions. Elle s'oppose à la géométrie analytique et refuse systématiquement l'utilisation des propriétés analytiques des figures ou l'appel aux coordonnées. Ses concepts principaux sont l'intersection, les transformations y compris par polaires réciproques, la logique.
Transformation de CayleyEn mathématiques, la transformation de Cayley, nommée d'après Arthur Cayley, possède différentes significations voisines. La définition originale est celle d'une application entre les matrices antisymétriques et les matrices de rotation. En analyse complexe, la transformation de Cayley est une application conforme envoyant le demi-plan complexe supérieur sur le disque unité. Enfin, dans la théorie des espaces de Hilbert, c'est une application entre opérateurs linéaires.
HyperplanEn mathématiques et plus particulièrement en algèbre linéaire et géométrie, les hyperplans d'un espace vectoriel E de dimension quelconque sont la généralisation des plans vectoriels d'un espace de dimension 3 : ce sont les sous-espaces vectoriels de codimension 1 dans E. Si E est de dimension finie n non nulle, ses hyperplans sont donc ses sous-espaces de dimension n – 1 : par exemple l'espace nul dans une droite vectorielle, une droite vectorielle dans un plan vectoriel Soient E un espace vectoriel et H un sous-espace.
PerspectivityIn geometry and in its applications to drawing, a perspectivity is the formation of an image in a picture plane of a scene viewed from a fixed point. The science of graphical perspective uses perspectivities to make realistic images in proper proportion. According to Kirsti Andersen, the first author to describe perspectivity was Leon Alberti in his De Pictura (1435). In English, Brook Taylor presented his Linear Perspective in 1715, where he explained "Perspective is the Art of drawing on a Plane the Appearances of any Figures, by the Rules of Geometry".
Application semi-linéaireEn algèbre linéaire, en particulier en géométrie projective, une application semi-linéaire entre les espaces vectoriels V et W sur un corps K est une fonction qui est une application linéaire « à torsion près », donc semi -linéaire, où « torsion » signifie « automorphisme de corps de K ». Explicitement, c'est une application telle que : est additive par rapport à l'addition vectorielle : pour tous et de ; il existe un automorphisme de corps θ de K tel que , où est l'image du scalaire par l'automorphisme .
Projectively extended real lineIn real analysis, the projectively extended real line (also called the one-point compactification of the real line), is the extension of the set of the real numbers, , by a point denoted ∞. It is thus the set with the standard arithmetic operations extended where possible, and is sometimes denoted by or The added point is called the point at infinity, because it is considered as a neighbour of both ends of the real line. More precisely, the point at infinity is the limit of every sequence of real numbers whose absolute values are increasing and unbounded.