Quantum statistical mechanicsQuantum statistical mechanics is statistical mechanics applied to quantum mechanical systems. In quantum mechanics a statistical ensemble (probability distribution over possible quantum states) is described by a density operator S, which is a non-negative, self-adjoint, trace-class operator of trace 1 on the Hilbert space H describing the quantum system. This can be shown under various mathematical formalisms for quantum mechanics. One such formalism is provided by quantum logic.
Nombre quantique secondaireEn mécanique quantique, le nombre quantique secondaire, noté l, également appelé nombre quantique azimutal, est l'un des quatre nombres quantiques décrivant l'état quantique d'un électron dans un atome. Il s'agit d'un nombre entier positif ou nul lié au nombre quantique principal n par la relation : . Il correspond au moment angulaire orbital de l'électron, et définit les sous-couches électroniques des atomes, tandis que le nombre quantique principal n définit les couches électroniques.
Spin quantum numberIn physics, the spin quantum number is a quantum number (designated s) that describes the intrinsic angular momentum (or spin angular momentum, or simply spin) of an electron or other particle. It has the same value for all particles of the same type, such as s = 1/2 for all electrons. It is an integer for all bosons, such as photons, and a half-odd-integer for all fermions, such as electrons and protons. The component of the spin along a specified axis is given by the spin magnetic quantum number, conventionally written ms.
Nombre quantique principalvignette|Modèle de Bohr illustrant les niveaux d'énergie d'un atome. En mécanique quantique, le nombre quantique principal, noté n, est l'un des quatre nombres quantiques décrivant l'état quantique des électrons dans les atomes. Il s'agit d'un nombre entier non nul, c'est-à-dire vérifiant . Chaque nombre n est associé à une couche électronique dans l'atome : couche K pour , couche L pour , couche M pour La distance moyenne de l'électron au noyau atomique croît en fonction de n : la couche K est ainsi la plus profonde dans l'atome, et les autres couches s'organisent de manière concentrique autour du noyau.
AdimensionnementL'adimensionnement (parfois appelé aussi dédimensionnement) est la suppression partielle ou totale des unités d'une équation par une substitution appropriée de variables, dans le but de simplifier la représentation paramétrique de problèmes physiques. Elle est étroitement reliée à l'analyse dimensionnelle. L'adimensionnement ne doit pas être confondu avec la conversion de paramètres extensifs d'une équation en paramètres intensifs, car cette dernière procédure conduit toujours à des variables auxquelles des unités sont attachées.
Mesure spectraleEn mathématiques, plus précisément en analyse fonctionnelle, une mesure spectrale est une application définie sur une tribu à valeurs dans l'espace des projections orthogonales d'un espace hilbertien et vérifiant des axiomes semblables à ceux qui définissent les mesures positives. Les mesures spectrales sont utilisées pour exprimer des résultats en théorie spectrale, tels que le théorème spectral pour les opérateurs auto-adjoints. Les mesures spectrales ont des propriétés similaires aux mesures réelles positives.
Complex projective spaceIn mathematics, complex projective space is the projective space with respect to the field of complex numbers. By analogy, whereas the points of a real projective space label the lines through the origin of a real Euclidean space, the points of a complex projective space label the complex lines through the origin of a complex Euclidean space (see below for an intuitive account). Formally, a complex projective space is the space of complex lines through the origin of an (n+1)-dimensional complex vector space.
Vide quantiqueEn physique, le vide quantique décrit l'état du vide selon les principes de la mécanique quantique. Alors que l'on croyait l'univers rempli d'éther, la physique du a abandonné cette notion pour un espace littéralement vide de matière. Les principes quantiques montrent que ce vide est en réalité rempli d'énergie qui engendre de nombreux effets : on parle alors d'énergie du vide. Dans la théorie de l'électrodynamique quantique, les particules élémentaires échangent des photons virtuels pour interagir.
Quantum operationIn quantum mechanics, a quantum operation (also known as quantum dynamical map or quantum process) is a mathematical formalism used to describe a broad class of transformations that a quantum mechanical system can undergo. This was first discussed as a general stochastic transformation for a density matrix by George Sudarshan. The quantum operation formalism describes not only unitary time evolution or symmetry transformations of isolated systems, but also the effects of measurement and transient interactions with an environment.
Particules indiscernablesLes particules indiscernables ou particules identiques sont des particules qui ne peuvent être différenciées l'une de l'autre, même en principe. Ce concept prend tout son sens en mécanique quantique, où les particules n'ont pas de trajectoire bien définie qui permettrait de les distinguer l'une de l'autre. Les particules indiscernables peuvent être soit des particules élémentaires telles que l'électron ou le photon, ou des particules composites - neutron, proton - ayant le même état interne.