Résumé
In quantum mechanics, the principal quantum number (symbolized n) is one of four quantum numbers assigned to each electron in an atom to describe that electron's state. Its values are natural numbers (from 1) making it a discrete variable. Apart from the principal quantum number, the other quantum numbers for bound electrons are the azimuthal quantum number l, the magnetic quantum number ml, and the spin quantum number s. As n increases, the electron is also at a higher energy and is, therefore, less tightly bound to the nucleus. For higher n the electron is farther from the nucleus, on average. For each value of n there are n accepted l (azimuthal) values ranging from 0 to n − 1 inclusively, hence higher-n electron states are more numerous. Accounting for two states of spin, each n-shell can accommodate up to 2n2 electrons. In a simplistic one-electron model described below, the total energy of an electron is a negative inverse quadratic function of the principal quantum number n, leading to degenerate energy levels for each n > 1. In more complex systems—those having forces other than the nucleus–electron Coulomb force—these levels split. For multielectron atoms this splitting results in "subshells" parametrized by l. Description of energy levels based on n alone gradually becomes inadequate for atomic numbers starting from 5 (boron) and fails completely on potassium (Z = 19) and afterwards. The principal quantum number was first created for use in the semiclassical Bohr model of the atom, distinguishing between different energy levels. With the development of modern quantum mechanics, the simple Bohr model was replaced with a more complex theory of atomic orbitals. However, the modern theory still requires the principal quantum number. Hydrogen-like atom There is a set of quantum numbers associated with the energy states of the atom. The four quantum numbers n, l, m, and s specify the complete and unique quantum state of a single electron in an atom, called its wave function or orbital.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (14)
CH-244: Quantum chemistry
Introduction to Quantum Mechanics with examples related to chemistry
CH-110: Advanced general chemistry I
Le cours comporte deux parties. Les bases de la thermodynamique des équilibres et de la cinétique des réactions sont introduites dans l'une d'elles. Les premières notions de chimie quantique sur les é
PHYS-739: Conformal Field theory and Gravity
This course is an introduction to the non-perturbative bootstrap approach to Conformal Field Theory and to the Gauge/Gravity duality, emphasizing the fruitful interplay between these two ideas.
Afficher plus
Publications associées (43)

On Quantum Secure Compressing Pseudorandom Functions

Ritam Bhaumik

In this paper we characterize all 2n-bit-to-n-bit Pseudorandom Functions (PRFs) constructed with the minimum number of calls to n-bit-to-n-bit PRFs and arbitrary number of linear functions. First, we show that all two-round constructions are either classic ...
2023

Nonlinear interactions of ion acoustic waves explored using fast imaging decompositions

Fast camera imaging is used to study ion acoustic waves propagating azimuthally in a magnetized plasma column. The high-speed image sequences are analyzed using proper orthogonal decomposition and 2D Fourier transform, allowing to evaluate the assets and d ...
AIP Publishing2023

Hunting for tetraquarks in ultraperipheral heavy ion collisions

Angelo Esposito, Claudio Andrea Manzari

Ultraperipheral heavy ion collisions constitute an ideal setup to look for exotic hadrons because of their low event multiplicity and the possibility of an efficient background rejection. We propose to look for fourquark states produced by photon-photon fu ...
AMER PHYSICAL SOC2021
Afficher plus