Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'analyse des composantes principales, la réduction de la dimensionnalité, l'évaluation de la qualité des données et le contrôle du taux d'erreur.
Couvre les méthodes de projection d'images pour simplifier l'interprétation multidimensionnelle des données à l'aide d'opérations telles que la projection d'intensité maximale et les filtres.
Couvre les bases des réseaux neuronaux, des fonctions d'activation, de la formation, du traitement d'image, des CNN, de la régularisation et des méthodes de réduction de dimensionnalité.
Couvre les techniques de réduction de dimensionnalité non linéaire à l'aide d'autoencodeurs, d'autoencodeurs profonds et d'autoencodeurs convolutifs pour diverses applications.
On Single-cell Temporal-Omics explore la dynamique transcriptionnelle à partir de données instantanées et l'interprétation de la vitesse de l'ARN dans le métabolisme de l'ARN.