Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les techniques d'apprentissage non supervisées pour réduire les dimensions des données, en mettant l'accent sur l'APC, l'ADL et l'APC du noyau.
Explore les méthodes de sélection de variables dans l'apprentissage automatique, y compris les approches de sous-ensemble et de conteneur, en utilisant des procédures exhaustives et gourmandes.
Explore PCA et LDA pour la réduction de dimensionnalité linéaire dans les données, en mettant l'accent sur les techniques de clustering et de séparation de classe.
Explore la théorie du clustering spectral, la décomposition des valeurs propres, la matrice laplacienne et les applications pratiques dans l'identification des clusters.
Explore le picking automatisé des barres de renforcement dans les données radar pénétrantes au sol à l'aide de techniques d'apprentissage automatique et de traitement du signal.
Introduit l'apprentissage supervisé, couvrant la classification, la régression, l'optimisation des modèles, le surajustement, et les méthodes du noyau.