Le terme d'asymptote (prononciation : ) est utilisé en mathématiques pour préciser des propriétés éventuelles d'une branche infinie de courbe à accroissement tendant vers l'infinitésimal. C'est d'abord un adjectif d'étymologie grecque qui peut qualifier une droite, un cercle, un point... dont une courbe plus complexe peut se rapprocher. C'est aussi devenu un nom féminin synonyme de droite asymptote. Une droite asymptote à une courbe est une droite telle que, lorsque l'abscisse ou l'ordonnée tend vers l'infini, la distance de la courbe à la droite tend vers 0. L'étude du comportement asymptotique est particulièrement développée dans les études de fonctions et présente des commodités reconnues par de nombreux mathématiciens. Dans le domaine scientifique, il arrive fréquemment d'étudier des fonctions dépendant du temps (évolution de populations, réaction chimique ou nucléaire, graphique de température, oscillation d'un amortisseur). Un des objectifs du chercheur est alors de connaître l'état à la fin de l'expérience, c’est-à-dire lorsqu'un grand intervalle de temps s'est écoulé. L'objectif n'est alors pas de connaître les variations intermédiaires mais de déterminer le comportement stable, à l'infini du phénomène mesuré. Le projet d'une définition uniforme n'étant pas raisonnable, cet article détaillera plusieurs situations. L'étymologie grecque du mot « asymptote » construit à l'aide du préfixe privatif « a » et de « symptôsis » (rencontre) laisse imaginer que deux courbes asymptotes ne se rencontrent pas. Cette impression est renforcée par certains usages littéraires du terme : – (Victor Hugo. William Shakespeare - L'art et la science). Une des premières rencontres de droites asymptotes avec l'étude de l'hyperbole semble confirmer cet état de fait. Cette condition de ne jamais se rencontrer est même présente dans les vieilles définitions de l'asymptote. Cependant, la définition mathématique actuelle du terme (courbes se rapprochant indéfiniment près l'une de l'autre) permet la rencontre des courbes une fois ou même une infinité de fois et n'exclut pas la possibilité que les courbes se trouvent confondues.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (6)
MATH-126: Geometry for architects II
Ce cours traite des 3 sujets suivants : la perspective, la géométrie descriptive, et une initiation à la géométrie projective.
ME-221: Dynamical systems
Provides the students with basic notions and tools for the analysis of dynamic systems. Shows them how to develop mathematical models of dynamic systems and perform analysis in time and frequency doma
MATH-101(g): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
Afficher plus
Séances de cours associées (34)
Extrêmes de fonctions: désirabilité et décorabilité
Explore la désirabilité et la décorabilité des fonctions extrêmes et des asymptotes.
Intégrales définies : propriétés et interprétation
Couvre le calcul des points minimaux et le concept d'intégrales définies.
Analyse du système dans le domaine fréquentiel
Couvre l'analyse du système dans le domaine fréquentiel pour les systèmes dynamiques, y compris la réponse par paliers, la réponse en fréquence et les diagrammes de Bode.
Afficher plus
Publications associées (31)

Physics-Inspired Equivariant Descriptors of Nonbonded Interactions

Michele Ceriotti, Philip Robin Loche, Kevin Kazuki Huguenin-Dumittan

One essential ingredient in many machine learning (ML) based methods for atomistic modeling of materials and molecules is the use of locality. While allowing better system-size scaling, this systematically neglects long-range (LR) effects such as electrost ...
Washington2023

On the asymptotic behavior of solutions to the Vlasov-Poisson system

Klaus Martin Widmayer

We prove small data modified scattering for the Vlasov-Poisson system in dimension d=3d=3 using a method inspired from dispersive analysis. In particular, we identify a simple asymptotic dynamic related to the scattering mass. ...
2021

Non-Exponential Variations for Classical Results in First Passage Percolation

Jacques Saliba

We study in this thesis the asymptotic behavior of optimal paths on a random graph model, the configuration model, for which we assign continuous random positive weights on its edges. We start by describing the asymptotic behavior of the diameter and the f ...
EPFL2020
Afficher plus
Concepts associés (19)
Parabole
vignette|Une parabole représentée par la fonction f(x)=x. La parabole est une courbe plane, symétrique par rapport à un axe, ayant approximativement la forme d'un U dont les branches s'écarteraient indéfiniment. Cette courbe intervient dans les problèmes les plus élémentaires de mécanique ou de mathématiques. En effet la trajectoire d'un projectile qui n'est soumis qu'à la pesanteur est une parabole, ou encore, en mathématiques, la représentation graphique des polynômes de degré 2 est une parabole.
Conique
En géométrie euclidienne, une conique est une courbe plane algébrique, définie initialement comme l’intersection d'un cône de révolution (supposé prolongé à l’infini de part et d’autre du sommet) avec un plan. Lorsque le plan de coupe ne passe pas par le sommet du cône, la conique est dite non dégénérée et réalise l’une des trois formes de courbe suivantes : ellipse, parabole ou hyperbole (le cercle étant un cas particulier de l'ellipse, parfois appelé quatrième forme). Ces courbes sont caractérisées par un paramètre réel appelé excentricité.
Hyperbole (mathématiques)
thumb|Hyperbole obtenue comme intersection d'un cône et d'un plan parallèle à l'axe du cône.Si l'on incline légèrement le plan, l'intersection sera encore une hyperbole tant que l'angle d'inclinaison reste inférieur à l'angle que fait une génératrice avec l'axe du cône. En mathématiques, une hyperbole est une courbe plane obtenue comme la double intersection d'un double cône de révolution avec un plan. Elle peut également être définie comme conique d'excentricité supérieure à 1, ou comme ensemble des points dont la différence des distances à deux points fixes est constante.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.