Concept

Théorème de Lagrange sur les groupes

Résumé
vignette|Si G est le groupe des entiers modulo 8, alors {0, 4} forme un sous-groupe H. Sur l'exemple, {0, 4} contient 2 éléments et 2 divise 8. En mathématiques, le théorème de Lagrange sur les groupes énonce un résultat élémentaire fournissant des informations combinatoires sur les groupes finis. Le théorème doit son nom au mathématicien Joseph-Louis Lagrange. Il est parfois nommé théorème d'Euler-Lagrange car il généralise un théorème d'Euler sur les entiers. Par définition, l'indice [G:H] de H dans G est le cardinal de l'ensemble G/H des classes à gauche suivant H des éléments de G. Or ces classes forment une partition de G et chacune d'entre elles a le même cardinal que H. Par le principe des bergers, on en déduit : Remarquons que cette formule reste vraie quand les trois cardinaux qu'elle relie sont infinis, et qu'elle est un cas particulier de la formule des indices. L'ordre d'un élément x d'un groupe fini peut se définir comme l'ordre du sous-groupe qu'il engendre. (C'est aussi le plus petit entier n > 0 vérifiant : x = e.) Par le théorème de Lagrange, cet ordre divise l'ordre du groupe. Un groupe G d'ordre premier p est cyclique et simple. En effet, tout élément non neutre x de G est d'ordre strictement supérieur à 1 et par ce qui précède un diviseur de p. Comme p est premier, l'ordre de x est p ; autrement dit, x engendre un groupe cyclique d'ordre p, nécessairement égal à G. Ce théorème peut servir à démontrer le petit théorème de Fermat et sa généralisation, le théorème d'Euler. Notons G le groupe des démontages-remontages du cube de Rubik et Rub le sous-groupe de G correspondant aux mouvements admissibles (on ne "casse" pas le cube). Alors l'indice de Rub dans G est 12. On obtient alors aisément que le nombre de configurations possibles du cube de Rubik est 43 252 003 274 489 856 000. Un groupe fini G ne vérifie pas toujours la « réciproque du théorème de Lagrange », c'est-à-dire qu'il peut exister un diviseur d de |G| pour lequel G n'admet aucun sous-groupe d'ordre d.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.