Résumé
En mathématiques et plus précisément en théorie des groupes, un groupe cyclique est un groupe qui est à la fois fini et monogène, c'est-à-dire qu'il existe un élément a du groupe tel que tout élément du groupe puisse s'exprimer sous forme d'un multiple de a (en notation additive, ou comme puissance en notation multiplicative) ; cet élément a est appelé générateur du groupe. Il n'existe, à isomorphisme près, pour tout entier n > 0, qu'un seul groupe cyclique d'ordre n : le groupe quotient Z/nZ — également noté Z ou C — de Z par le sous-groupe des multiples de n. Les groupes cycliques sont importants en algèbre. On les retrouve, par exemple, en théorie des anneaux et en théorie de Galois. Les groupes monogènes sont importants pour l'étude des groupes abéliens de type fini : tous sont des produits directs de groupes monogènes (dont certains peuvent être monogènes infinis c'est-à-dire isomorphes à Z). En particulier, les groupes abéliens finis sont classifiés par le théorème de Kronecker. Dans le cas des groupes finis non abéliens, le théorème de Cauchy montre l'existence de nombreux sous-groupes cycliques. Ce théorème est utilisé pour la classification des groupes finis, même si souvent, certaines formes plus élaborées sont utilisées comme les trois théorèmes de Sylow. arithmétique modulaire En arithmétique ces groupes offrent un large répertoire d'outils et permettent de nombreuses démonstrations. Ces outils sont regroupés dans une branche des mathématiques nommée arithmétique modulaire. Ils se fondent sur l'étude des congruences sur l'anneau des entiers. On peut citer comme exemple le petit théorème de Fermat ou encore le théorème des deux carrés de Fermat avec la démonstration de Richard Dedekind. On peut encore citer la loi de réciprocité quadratique qui repose sur des structures de groupes cycliques. Il existe de nombreux cas où le groupe sous-jacent est non monogène, mais seulement abélien de type fini, ce qui s'y ramène par produit. On le trouve par exemple dans le théorème de la progression arithmétique ou le théorème des unités de Dirichlet.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Personnes associées (1)
Unités associées

Aucun résultat

Concepts associés (169)
Action par conjugaison
En mathématiques, et plus précisément en théorie des groupes, une action par conjugaison est un cas particulier d'action de groupe. L'ensemble sur lequel agit le groupe G est ici G lui-même. En effet, aut∘aut = aut. Les classes de conjugaison sont utilisées pour la démonstration du théorème de Wedderburn stipulant que tout corps fini est commutatif. Dans le cadre de la théorie des représentations d'un groupe fini, les classes de conjugaison sont à la base de la définition des fonctions centrales d'un groupe fini, elles servent à définir l'espace vectoriel, les caractères des représentations.
Groupe fini
vignette|Un exemple de groupe fini est le groupe des transformations laissant invariant un flocon de neige (par exemple la symétrie par rapport à l'axe horizontal). En mathématiques, un groupe fini est un groupe constitué d'un nombre fini d'éléments. Soit G un groupe. On note en général sa loi multiplicativement et on désigne alors son élément neutre par 1. Toutefois, si G est abélien, la loi est souvent notée additivement et son élément neutre est alors désigné par 0 ; ce n'est cependant pas une règle générale : par exemple, le groupe multiplicatif d'un corps commutatif est noté multiplicativement, bien qu'il soit abélien.
Groupe cyclique
En mathématiques et plus précisément en théorie des groupes, un groupe cyclique est un groupe qui est à la fois fini et monogène, c'est-à-dire qu'il existe un élément a du groupe tel que tout élément du groupe puisse s'exprimer sous forme d'un multiple de a (en notation additive, ou comme puissance en notation multiplicative) ; cet élément a est appelé générateur du groupe. Il n'existe, à isomorphisme près, pour tout entier n > 0, qu'un seul groupe cyclique d'ordre n : le groupe quotient Z/nZ — également noté Z ou C — de Z par le sous-groupe des multiples de n.
Afficher plus
Cours associés (25)
MATH-310: Algebra
Study basic concepts of modern algebra: groups, rings, fields.
COM-401: Cryptography and security
This course introduces the basics of cryptography. We review several types of cryptographic primitives, when it is safe to use them and how to select the appropriate security parameters. We detail how
MATH-113: Algebraic structures
Le but de ce cours est d'introduire et d'étudier les notions de base de l'algèbre abstraite.
Afficher plus
Séances de cours associées (155)
Groupes d'Abeliens Finites
Couvre le théorème de Cauchy, la classification des groupes abeliens finis, les propriétés directes du produit, et plus encore.
Les bonnes actions et les quotients
Couvre les actions correctes des groupes sur les surfaces de Riemann et introduit des courbes algébriques via des racines carrées.
Autorisation anonyme : Boîte à outils d'ingénierie de la vie privée
Couvre les autorisations anonymes, les preuves de zéro connaissance, les lettres de créance fondées sur les attributs et les problèmes pratiques en matière d'authentification anonyme.
Afficher plus
MOOCs associés

Aucun résultat