Concept

Wagner's theorem

Concepts associés (17)
Forbidden graph characterization
In graph theory, a branch of mathematics, many important families of graphs can be described by a finite set of individual graphs that do not belong to the family and further exclude all graphs from the family which contain any of these forbidden graphs as (induced) subgraph or minor. A prototypical example of this phenomenon is Kuratowski's theorem, which states that a graph is planar (can be drawn without crossings in the plane) if and only if it does not contain either of two forbidden graphs, the complete graph K_5 and the complete bipartite graph K_3,3.
Homéomorphisme de graphes
En théorie des graphes, une branche des mathématiques, deux graphes et sont homéomorphes si l'on peut obtenir un même graphe en subdivisant certaines de leurs arêtes. Deux graphes sont homéomorphes si et seulement si leurs représentations graphiques usuelles (avec des segments de droites reliant les sommets entre eux) sont homéomorphes au sens que ce mot a en topologie. Subdivision La subdivision d'une arête conduit à un graphe contenant un nouveau sommet et où l'on a remplacé l'arête par deux nouvelles arêtes, et .
Kuratowski's theorem
In graph theory, Kuratowski's theorem is a mathematical forbidden graph characterization of planar graphs, named after Kazimierz Kuratowski. It states that a finite graph is planar if and only if it does not contain a subgraph that is a subdivision of (the complete graph on five vertices) or of (a complete bipartite graph on six vertices, three of which connect to each of the other three, also known as the utility graph).
Mineur (théorie des graphes)
La notion de mineur d'un graphe est un concept de théorie des graphes. Il a été défini et étudié par Robertson et Seymour dans une série d'articles intitulée Graph minors (I à XXIII), publiée dans le Journal of Combinatorial Theory entre 1983 et 2011. Soit un graphe non orienté fini. Un graphe est un mineur de s'il peut être obtenu en contractant des arêtes d'un sous-graphe de .
Graphe biparti complet
En théorie des graphes, un graphe est dit biparti complet (ou encore est appelé une biclique) s'il est biparti et chaque sommet du premier ensemble est relié à tous les sommets du second ensemble. Plus précisément, il existe une partition de son ensemble de sommets en deux sous-ensembles et telle que chaque sommet de est relié à chaque sommet de . Si le premier ensemble est de cardinal m et le second ensemble est de cardinal n, le graphe biparti complet est noté . Si m = 1, le graphe complet biparti K1,n est une étoile et est noté .
Conjecture de Hadwiger
En théorie des graphes, la conjecture de Hadwiger est une conjecture très générale sur les problèmes de coloration de graphes. Formulée en 1943 par Hugo Hadwiger, elle énonce que si le graphe complet à k sommets, noté , n'est pas un mineur d'un graphe , alors il est possible de colorer les sommets de avec couleurs. Hadwiger a prouvé les cas dans le même article qui formule la conjecture. Wagner a prouvé en 1937 que le cas est équivalent au théorème des quatre couleurs, et la démonstration en 1976 par Appel et Haken du théorème des quatre couleurs a donc prouvé en même temps la conjecture de Hadwiger pour le cas .
Graphe de Wagner
Le graphe de Wagner est, en théorie des graphes, un graphe 3-régulier possédant 8 sommets et 12 arêtes. C'est un cas particulier d'échelle de Möbius. Le graphe de Wagner est un cubique et hamiltonien, il peut être défini par la notation LCF [4]8. Une autre façon de le construire est de le considérer comme une échelle de Möbius, c'est-à-dire un graphe échelle sur le ruban de Möbius. Le diamètre du graphe de Wagner, l'excentricité maximale de ses sommets, est 2, son rayon, l'excentricité minimale de ses sommets, est 2 et sa maille, la longueur de son plus court cycle, est 4.
Clique-sum
In graph theory, a branch of mathematics, a clique-sum is a way of combining two graphs by gluing them together at a clique, analogous to the connected sum operation in topology. If two graphs G and H each contain cliques of equal size, the clique-sum of G and H is formed from their disjoint union by identifying pairs of vertices in these two cliques to form a single shared clique, and then possibly deleting some of the clique edges. A k-clique-sum is a clique-sum in which both cliques have at most k vertices.
Graphic matroid
In the mathematical theory of matroids, a graphic matroid (also called a cycle matroid or polygon matroid) is a matroid whose independent sets are the forests in a given finite undirected graph. The dual matroids of graphic matroids are called co-graphic matroids or bond matroids. A matroid that is both graphic and co-graphic is sometimes called a planar matroid (but this should not be confused with matroids of rank 3, which generalize planar point configurations); these are exactly the graphic matroids formed from planar graphs.
Énigme des trois maisons
L'énigme des trois maisons, aussi appelée l'énigme de l'eau, du gaz et de l'électricité, est un jeu mathématique dont l'analyse utilise un théorème de topologie ou de théorie des graphes. Ce problème n'a pas de solution. Georges Perec le cite en 1978 dans son livre Je me souviens : . Cette énigme est déjà posée par Henry Dudeney en 1917 dans son livre Amusements in mathematics. Il précise qu'. Celle de l'article en est une, qu'il appelle eau, gaz, et électricité.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.