Concept

Kuratowski's theorem

Résumé
In graph theory, Kuratowski's theorem is a mathematical forbidden graph characterization of planar graphs, named after Kazimierz Kuratowski. It states that a finite graph is planar if and only if it does not contain a subgraph that is a subdivision of (the complete graph on five vertices) or of (a complete bipartite graph on six vertices, three of which connect to each of the other three, also known as the utility graph). A planar graph is a graph whose vertices can be represented by points in the Euclidean plane, and whose edges can be represented by simple curves in the same plane connecting the points representing their endpoints, such that no two curves intersect except at a common endpoint. Planar graphs are often drawn with straight line segments representing their edges, but by Fáry's theorem this makes no difference to their graph-theoretic characterization. A subdivision of a graph is a graph formed by subdividing its edges into paths of one or more edges. Kuratowski's theorem states that a finite graph is planar if it is not possible to subdivide the edges of or , and then possibly add additional edges and vertices, to form a graph isomorphic to . Equivalently, a finite graph is planar if and only if it does not contain a subgraph that is homeomorphic to or . If is a graph that contains a subgraph that is a subdivision of or , then is known as a Kuratowski subgraph of . With this notation, Kuratowski's theorem can be expressed succinctly: a graph is planar if and only if it does not have a Kuratowski subgraph. The two graphs and are nonplanar, as may be shown either by a case analysis or an argument involving Euler's formula. Additionally, subdividing a graph cannot turn a nonplanar graph into a planar graph: if a subdivision of a graph has a planar drawing, the paths of the subdivision form curves that may be used to represent the edges of itself. Therefore, a graph that contains a Kuratowski subgraph cannot be planar. The more difficult direction in proving Kuratowski's theorem is to show that, if a graph is nonplanar, it must contain a Kuratowski subgraph.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.