Publications associées (49)

A NEW PROOF OF THE ERDOS-KAC CENTRAL LIMIT THEOREM

Thomas Mountford, Michael Cranston

In this paper we use the Riemann zeta distribution to give a new proof of the Erdos-Kac Central Limit Theorem. That is, if zeta(s) = Sigma(n >= 1) (1)(s)(n) , s > 1, then we consider the random variable X-s with P(X-s = n) = (1) (zeta) ( ...
Providence2023

Quadrature-free immersed isogeometric analysis

Pablo Antolin Sanchez, Thibaut Hirschler

This paper presents a novel method for solving partial differential equations on three-dimensional CAD geometries by means of immersed isogeometric discretizations that do not require quadrature schemes. It relies on a newly developed technique for the eva ...
SPRINGER2022

Development of a new method to determine the axial void velocity profile in BWRs from measurements of the in-core neutron noise

Mathieu Hursin

Determination of the local void fraction in BWRs from in-core neutron noise measurements requires the knowledge of the axial velocity of the void. The purpose of this paper is to revisit the problem of determining the axial void velocity profile from the t ...
PERGAMON-ELSEVIER SCIENCE LTD2021

Markov cubature rules for polynomial processes

Damir Filipovic, Martin Larsson, Sergio Andres Pulido Nino

We study discretizations of polynomial processes using finite state Markov processes satisfying suitable moment matching conditions. The states of these Markov processes together with their transition probabilities can be interpreted as Markov cubature rul ...
ELSEVIER2020

Single and multiple recurrence along non-polynomial sequences

Florian Karl Richter

We establish new recurrence and multiple recurrence results for a rather large family of non-polynomial functions which contains tempered functions and (non-polynomial) functions from a Hardy field with polynomial growth. In particular, we show that, somew ...
2020

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.