En informatique théorique, et notamment en théorie de la complexité, un algorithme est appelé pseudo-polynomial si sa complexité en temps est un polynôme en la valeur numérique de l'entrée (mais pas nécessairement en la taille en mémoire de l'entrée).
Considérons le problème du test de primalité. On peut vérifier qu'un entier naturel donné n est premier en testant qu'il n'est divisible par aucun des entiers . Cela exige divisions, de sorte que le temps pris par cet algorithme naïf est linéaire en la valeur n .
Néanmoins, cet algorithme n'est pas efficace, comme on pourrait le penser d'un algorithme dit linéaire, puisqu’il demande déjà des milliards d'opérations sur une donnée de neuf chiffres décimaux. De fait, en théorie de la complexité, la complexité d'un algorithme est calculée en fonction de la longueur de l'entrée (et non pas de sa valeur), et cette longueur est généralement logarithmique en la valeur. Ainsi, l’algorithme naïf de test de primalité est pseudo-polynomial, tout en étant en temps exponentiel.
La différence apparaît plus clairement encore quand on compare un tel algorithme avec un algorithme véritablement polynomial comme l'algorithme naïf d'addition d'entiers : l'addition de deux nombres à neuf chiffres décimaux nécessite environ neuf étapes, cet algorithme est réellement polynomial en la longueur de l'entrée.
Il y a bien un cas — théorique — où les concepts de temps polynomial et pseudo-polynomial coïncident, c'est le cas où les entrées sont données en écriture unaire. La longueur d'une donnée est égale à sa valeur, puisque c'est le nombre de « bâtons » nécessaires pour la représenter.
Dans le cas du test de primalité, il existe un algorithme appelé l'algorithme AKS d'après les initiales des noms de leurs inventeurs, découvert en 2002, qui est réellement polynomial en la taille de la donnée : son temps de calcul, pour un nombre n, est de l'ordre de .
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
L'objectif de ce cours est d'introduire les étudiants à la pensée algorithmique, de les familiariser avec les fondamentaux de l'Informatique et de développer une première compétence en programmation (
This course is an introduction to linear and discrete optimization.Warning: This is a mathematics course! While much of the course will be algorithmic in nature, you will still need to be able to p
In this thesis, we give new approximation algorithms for some NP-hard problems arising in resource allocation and network design. As a resource allocation problem, we study the Santa Claus problem (also known as the MaxMin Fair Allocation problem) in which ...
En théorie de la complexité, un problème NP-complet ou problème NPC (c'est-à-dire un problème complet pour la classe NP) est un problème de décision vérifiant les propriétés suivantes : il est possible de vérifier une solution efficacement (en temps polynomial) ; la classe des problèmes vérifiant cette propriété est notée NP ; tous les problèmes de la classe NP se ramènent à celui-ci via une réduction polynomiale ; cela signifie que le problème est au moins aussi difficile que tous les autres problèmes de l
Le problème de la somme de sous-ensembles (en anglais : subset sum problem) est un problème de décision important en complexité algorithmique et en cryptologie. Le problème peut être décrit de la manière suivante : étant donné un ensemble de entiers, existe-t-il un sous-ensemble de dont la somme des éléments est nulle ? Par exemple, pour l'ensemble {-8, -3, -2, 4, 5}, la réponse est oui car la somme des éléments du sous-ensemble {-3, -2, 5} est nulle, par contre pour {-6, -1, 2, 3, 8} la réponse est non.
En algorithmique, le problème du sac à dos, parfois noté (KP) (de l'anglais Knapsack Problem) est un problème d'optimisation combinatoire. Ce problème classique en informatique et en mathématiques modélise une situation analogue au remplissage d'un sac à dos. Il consiste à trouver la combinaison d'éléments la plus précieuse à inclure dans un sac à dos, étant donné un ensemble d'éléments décrits par leurs poids et valeurs.
We revisit the problem max-min degree arborescence, which was introduced by Bateni et al. [STOC'09] as a central special case of the general Santa Claus problem, which constitutes a notorious open question in approximation algorithms. In the former problem ...
New York2023
, ,
We study the computational complexity of the optimal transport problem that evaluates the Wasser- stein distance between the distributions of two K-dimensional discrete random vectors. The best known algorithms for this problem run in polynomial time in th ...