In graph theory, an intersection graph is a graph that represents the pattern of intersections of a family of sets. Any graph can be represented as an intersection graph, but some important special classes of graphs can be defined by the types of sets that are used to form an intersection representation of them.
Formally, an intersection graph G is an undirected graph formed from a family of sets
by creating one vertex v_i for each set S_i, and connecting two vertices v_i and v_j by an edge whenever the corresponding two sets have a nonempty intersection, that is,
Any undirected graph G may be represented as an intersection graph. For each vertex vi of G, form a set Si consisting of the edges incident to vi; then two such sets have a nonempty intersection if and only if the corresponding vertices share an edge. Therefore, G is the intersection graph of the sets Si.
provide a construction that is more efficient, in the sense that it requires a smaller total number of elements in all of the sets Si combined. For it, the total number of set elements is at most n2/4, where n is the number of vertices in the graph. They credit the observation that all graphs are intersection graphs to , but say to see also . The intersection number of a graph is the minimum total number of elements in any intersection representation of the graph.
Many important graph families can be described as intersection graphs of more restricted types of set families, for instance sets derived from some kind of geometric configuration:
An interval graph is defined as the intersection graph of intervals on the real line, or of connected subgraphs of a path graph.
An indifference graph may be defined as the intersection graph of unit intervals on the real line
A circular arc graph is defined as the intersection graph of arcs on a circle.
A polygon-circle graph is defined as the intersection of polygons with corners on a circle.
One characterization of a chordal graph is as the intersection graph of connected subgraphs of a tree.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course teaches the basic techniques, methodologies, and practical skills required to draw meaningful insights from a variety of data, with the help of the most acclaimed software tools in the dat
This course is an introduction to the non-perturbative bootstrap approach to Conformal Field Theory and to the Gauge/Gravity duality, emphasizing the fruitful interplay between these two ideas.
Explore les arbres de recherche binaires optimaux pour minimiser le coût de recherche attendu et discute de la représentation des graphiques à l'aide de matrices et de listes d'adjacence.
Explore les épidémies répandre des modèles et Bootstrap Percolation dans les réseaux de treillis carrés, en se concentrant sur léquation de Kolmogorov et les fonctions génératrices de probabilité.
In graph theory, a circle graph is the intersection graph of a chord diagram. That is, it is an undirected graph whose vertices can be associated with a finite system of chords of a circle such that two vertices are adjacent if and only if the corresponding chords cross each other. gives an O(n2)-time algorithm that tests whether a given n-vertex undirected graph is a circle graph and, if it is, constructs a set of chords that represents it. A number of other problems that are NP-complete on general graphs have polynomial time algorithms when restricted to circle graphs.
The circle packing theorem (also known as the Koebe–Andreev–Thurston theorem) describes the possible tangency relations between circles in the plane whose interiors are disjoint. A circle packing is a connected collection of circles (in general, on any Riemann surface) whose interiors are disjoint. The intersection graph of a circle packing is the graph having a vertex for each circle, and an edge for every pair of circles that are tangent.
En théorie des graphes, un graphe de disques (ou disk graph en anglais) est le graphe d'intersection d'une collection de disques. C'est une extension du concept de graphe d'intervalle à la dimension 2. Formellement, G est un graphe de disques s'il existe une collection de disques dans le plan dont les centres sont en bijection avec les sommets de G et telle que deux disques s'intersectent si et seulement si les sommets correspondants sont reliés par une arête dans G.
An integer linear program is a problem of the form max{c^T x : Ax=b, x >= 0, x integer}, where A is in Z^(n x m), b in Z^m, and c in Z^n.Solving an integer linear program is NP-hard in general, but there are several assumptions for which it becomes fixed p ...
We examine the connection of two graph parameters, the size of a minimum feedback arcs set and the acyclic disconnection. A feedback arc set of a directed graph is a subset of arcs such that after deletion the graph becomes acyclic. The acyclic disconnecti ...
We prove that for any triangle-free intersection graph of n axis-parallel line segments in the plane, the independence number alpha of this graph is at least alpha n/4+ohm(root n). We complement this with a construction of a graph in this class satisfying ...