Axiome du choix dépendantEn mathématiques, l'axiome du choix dépendant, noté DC, est une forme faible de l'axiome du choix (AC), suffisante pour développer une majeure partie de l'analyse réelle. Il a été introduit par Bernays. L'axiome peut s'énoncer comme suit : pour tout ensemble non vide X, et pour toute relation binaire R sur X, si l'ensemble de définition de R est X tout entier (c'est-à-dire si pour tout a∈X, il existe au moins un b∈X tel que aRb) alors il existe une suite (xn) d'éléments de X telle que pour tout n∈N, xnRxn+1.
Univers de von NeumannEn théorie des ensembles, une des branches des mathématiques, l'univers de von Neumann, ou hiérarchie cumulative de von Neumann, est la classe notée V d'ensembles « héréditaires », tels que la relation d'appartenance sur ces ensembles soit bien fondée. Cette classe, qui est formalisée par la théorie des ensembles de Zermelo-Fraenkel (ZFC), est souvent utilisée pour fournir une interprétation ou une motivation des axiomes de ZFC. Ce concept est nommé d'après John von Neumann, bien qu'il ait été publié pour la première fois par Ernst Zermelo en 1930.
Raisonnement par récurrencevignette|Le raisonnement par récurrence est comme une suite de dominos. Si la propriété est vraie au rang n0 (i. e. le premier domino de numéro 0 tombe) et si sa véracité au rang n implique celle au rang n + 1 (i. e. la chute du domino numéro n fait tomber le domino numéro n + 1) alors la propriété est vraie pour tout entier (i. e. tous les dominos tombent). En mathématiques, le raisonnement par récurrence (ou par induction, ou induction complète) est une forme de raisonnement visant à démontrer une propriété portant sur tous les entiers naturels.
Ensemble bien ordonnéEn mathématiques, un ensemble ordonné (E, ≤) est bien ordonné et la relation ≤ est un bon ordre si la condition suivante est satisfaite : Toute partie non vide de E possède un plus petit élément. Formellement cela donne ∀X⊆E, X≠∅ ⇒ (∃u∈X, ∀v∈X u≤v). Si (E, ≤) est bien ordonné alors ≤ est nécessairement un ordre total, c'est-à-dire que deux éléments quelconques x et y de E sont toujours comparables. En effet, l'ensemble { x, y } possède un plus petit élément, donc on a x ≤ y ou y ≤ x.
Récurrence transfinieEn mathématiques, on parle de récurrence transfinie ou de récursion transfinie pour deux principes reliés mais distincts. Les définitions par récursion transfinie — permettent de construire des objets infinis, et généralisent les définitions de suite par récurrence sur l'ensemble N des entiers naturels en considérant des familles indexées par un ordinal infini quelconque, au lieu de se borner au plus petit d'entre eux qu'est N, appelé ω en tant que nombre ordinal.
Élément maximalDans un ensemble ordonné, un élément maximal est un élément tel qu'il n'existe aucun autre élément de cet ensemble qui lui soit supérieur, c'est-à-dire que a est dit élément maximal d'un ensemble ordonné (E, ≤) si a est un élément de E tel que : De même, a est un élément minimal de E si : Pour tout élément a de E, on a les équivalences et l'implication (stricte) : a est un majorant de E ⇔ a est la borne supérieure de E ⇔ a est l'élément maximum (ou « plus grand élément ») de E ⇒ a est l'unique élément maxima