In mathematics, the axiom of dependent choice, denoted by , is a weak form of the axiom of choice () that is still sufficient to develop most of real analysis. It was introduced by Paul Bernays in a 1942 article that explores which set-theoretic axioms are needed to develop analysis.
A homogeneous relation on is called a total relation if for every there exists some such that is true.
The axiom of dependent choice can be stated as follows:
For every nonempty set and every total relation on there exists a sequence in such that
for all
In fact, x0 may be taken to be any desired element of X. (To see this, apply the axiom as stated above to the set of finite sequences that start with x0 and in which subsequent terms are in relation , together with the total relation on this set of the second sequence being obtained from the first by appending a single term.)
If the set above is restricted to be the set of all real numbers, then the resulting axiom is denoted by
Even without such an axiom, for any , one can use ordinary mathematical induction to form the first terms of such a sequence.
The axiom of dependent choice says that we can form a whole (countably infinite) sequence this way.
The axiom is the fragment of that is required to show the existence of a sequence constructed by transfinite recursion of countable length, if it is necessary to make a choice at each step and if some of those choices cannot be made independently of previous choices.
Over (Zermelo–Fraenkel set theory without the axiom of choice), is equivalent to the for complete metric spaces.
It is also equivalent over to the Löwenheim–Skolem theorem.
is also equivalent over to the statement that every pruned tree with levels has a branch (proof below).
Furthermore, is equivalent to a weakened form of Zorn's lemma; specifically is equivalent to the statement that any partial order such that every well-ordered chain is finite and bounded, must have a maximal element.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course introduces the foundations of information retrieval, data mining and knowledge bases, which constitute the foundations of today's Web-based distributed information systems.
vignette|Spirale représentant les nombres ordinaux inférieurs à ωω. En mathématiques, on appelle nombre ordinal un objet permettant de caractériser le type d'ordre d'un ensemble bien ordonné quelconque, tout comme en linguistique, les mots premier, deuxième, troisième, quatrième, etc. s'appellent des adjectifs numéraux ordinaux, et servent à préciser le rang d'un objet dans une collection, ou l'ordre d'un événement dans une succession.
vignette|Chaque ensemble dans la suite dénombrable d'ensembles (Si) = S1, S2, S3, ... contient un élément différent de zéro, et éventuellement une infinité (ou même une infinité indénombrable) d'éléments. L'axiome du choix dénombrable nous permet de sélectionner arbitrairement un seul élément de chaque ensemble, formant une suite correspondante d'éléments (xi) = x1, x2, x3, ...
En mathématiques, le lemme de Zorn (ou théorème de Zorn, ou parfois lemme de Kuratowski-Zorn) est un théorème de la théorie des ensembles qui affirme que si un ensemble ordonné est tel que toute chaîne (sous-ensemble totalement ordonné) possède un majorant, alors il possède un élément maximal. Le lemme de Zorn est équivalent à l'axiome du choix en admettant les autres axiomes de la théorie des ensembles de Zermelo-Fraenkel. Le lemme de Zorn permet d'utiliser l'axiome du choix sans recourir à la théorie des ordinaux (ou à celle des bons ordres via le théorème de Zermelo).
We develop a framework to construct moduli spaces of Q-Gorenstein pairs. To do so, we fix certain invariants; these choices are encoded in the notion of Q-stable pair. We show that these choices give a proper moduli space with projective coarse moduli spac ...
Providence2024
Explore la théorie des dimensions des espaces vectoriels, couvrant les bases, les applications linéaires et les rangs.
Explore l'existence d'objets mathématiques, la vérité des propositions, et la connaissance à leur sujet, couvrant le platonisme, l'intuitisme, le structuralisme, le nominalisme, le logique et le formalisme.
Explore le théorème d'approximation CW, construisant des complexes CW à partir d'espaces pour assurer l'isomorphisme sur les groupes d'homologie.
Solidification is a phase transformation of utmost importance in material science, for it largely controls materials' microstructure on which a wide range of mechanical properties depends. Almost every human artifact undergoes a transformation that leads t ...
The need to maintain and expand hydraulic structures is a major challenge for the coming energy transition, especially in Western countries. One technique already widespread allowing to meet these issues consists in the use of geomembranes to overcome prob ...