Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre une introduction mathématique à l'apprentissage profond, y compris les défis, la puissance des classificateurs linéaires, l'échelle du modèle et les aspects théoriques.
Explore Kernel Principal Component Analysis, une méthode non linéaire utilisant des noyaux pour la résolution linéaire de problèmes et la réduction des dimensions.
Souligne l'importance d'une validation croisée prudente dans les réseaux neuronaux profonds, y compris la division des données et le concept de validation croisée K-fold.
Plongez dans l'importance des fonctionnalités, de l'évolution des modèles, des défis d'étiquetage et de la sélection des modèles dans l'apprentissage automatique.
Introduit des réseaux de flux, couvrant la structure du réseau neuronal, la formation, les fonctions d'activation et l'optimisation, avec des applications en prévision et finance.
Explore l'apprentissage progressif avec LWPR, en discutant des défis, des données synthétiques, des applications du monde réel et de l'algorithme LWPR.
Explore les algorithmes d'apprentissage automatique distribués, les méthodes adaptatives pour les modèles d'attention, l'apprentissage collaboratif et les problèmes ouverts sur le terrain.