Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit l'apprentissage automatique scientifique, en mettant l'accent sur son application dans divers domaines scientifiques et sur le lien entre l'apprentissage automatique et la physique.
Examine la sécurité et la vérifiabilité des systèmes de vote numérique, y compris le vote électronique en personne et à distance, en mettant l'accent sur la protection contre les manipulations et l'efficacité du dépouillement des bulletins de vote.
Se penche sur l'apprentissage automatique amélioré par les graphiques, en mettant l'accent sur la détection des fraudes, la détection des logiciels malveillants et les systèmes de recommandation.
Plonge dans la propagation en arrière dans l'apprentissage profond, répondant au défi de la disparition du gradient et à la nécessité d'unités cachées efficaces.
Explore la prédiction des rendements de réaction avec des modèles d'apprentissage en profondeur et l'importance d'ensembles de données de haute qualité en chimie.
Couvre le clustering, la classification et le support des principes, des applications et de l'optimisation des machines vectorielles, y compris la classification non linéaire et les effets du noyau gaussien.
Couvre les bases des réseaux neuronaux convolutionnels, y compris l'optimisation de la formation, la structure des couches et les pièges potentiels des statistiques sommaires.