Concepts associés (27)
Organigramme de programmation
thumb|Exemple simple d'organigramme. Un organigramme de programmation (parfois appelé algorigramme, logigramme ou plus rarement ordinogramme) est une représentation graphique normalisée de l'enchaînement des opérations et des décisions effectuées par un programme d'ordinateur. Il existe différents types d'organigrammes, désignés par des néologismes variés : Logigramme Un logigramme est un outil utilisé en Qualité qui permet de visualiser de façon séquentielle et logique les actions à mener et les décisions à prendre pour atteindre un objectif défini.
Hypergraphe
Les hypergraphes sont des objets mathématiques généralisant la notion de graphe. Ils ont été nommés ainsi par Claude Berge dans les années 1960. Les hypergraphes généralisent la notion de graphe non orienté dans le sens où les arêtes ne relient plus un ou deux sommets, mais un nombre quelconque de sommets (compris entre un et le nombre de sommets de l’hypergraphe). Certains théorèmes de la théorie des graphes se généralisent naturellement aux hypergraphes, par exemple le théorème de Ramsey.
Théorie existentielle sur les réels
En logique mathématique, la théorie existentielle sur les réels est l'ensemble des formules existentielles de la logique premier ordre vraies sur les réels. Elle est intéressante pour la planification de mouvement de robots. Elle est décidable et NP-dure et dans PSPACE. Elle définit aussi une classe de complexité entre NP et PSPACE, notée , pour laquelle des problèmes géométriques sur les graphes sont complets. La classe est la classe des problèmes de décision qui se réduisent en temps polynomial à vérifier si une formule de la théorie existentielle sur les réels est vraie.
Dégénérescence (théorie des graphes)
En théorie des graphes, la dégénérescence est un paramètre associé à un graphe non orienté. Un graphe est k-dégénéré si tout sous-graphe contient un nœud de degré inférieur ou égal à k, et la dégénérescence d'un graphe est le plus petit k tel qu'il est k-dégénéré. On peut de façon équivalente définir le paramètre en utilisant un ordre sur les sommets (appelé ordre de dégénérescence) tel que, pour tout sommet, le nombre d'arêtes vers des sommets plus petits dans l'ordre est au plus k. On parle alors parfois de nombre de marquage.
Théorie topologique des graphes
En mathématiques, la théorie topologique des graphes est une branche de la théorie des graphes . Elle étudie entre autres les plongements de graphes dans des surfaces, les graphiques en tant qu'espaces topologiques ainsi que les immersions de graphes. Un plongement d'un graphe dans une surface donnée, une sphère par exemple, est une façon de dessiner ce graphe sur cette surface sans que deux arêtes se croisent. Un problème fondamental de la théorie topologique des graphes, souvent présenté comme un casse - tête mathématique, est le problème des trois chalets.
Graphe médian
En théorie des graphes, un graphe médian est un type de graphe. Étant donné un triplet de nœuds dans un graphe, les médians de ces sommets sont les sommets se trouvant sur les plus courts chemins entre ces sommets. Un graphe médian est un graphe tel que pour tout triplet de nœuds il existe un unique médian. En théorie des graphes, les médians d'un triplet de sommets sont les sommets se trouvant sur les plus courts chemins entre ces sommets. Autrement dit, si est l'ensemble de sommets sur les plus courts chemins entre et , alors l'ensemble des sommets médians est .
Graphe toroïdal
right|frame| Un graphe plongé sur le tore de telle façon que les arêtes ne se coupent pas. En mathématiques, et plus précisément en théorie des graphes, un graphe G est toroïdal s'il peut être plongé sur le tore, c'est-à-dire que les sommets du graphe peuvent être placés sur le tore de telle façon que les arêtes ne se coupent pas. En général dire qu'un graphe est toroïdal sous-entend également qu'il n'est pas planaire.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.