Arithmétique du second ordreEn logique mathématique, l'arithmétique du second ordre est une théorie des entiers naturels et des ensembles d'entiers naturels. Elle a été introduite par David Hilbert et Paul Bernays dans leur livre Grundlagen der Mathematik. L'axiomatisation usuelle de l'arithmétique du second ordre est notée Z2. L'arithmétique de second ordre a pour conséquence les théorèmes de l'arithmétique de Peano (du premier ordre), mais elle est à la fois plus forte et plus expressive que celle-ci.
Ordinal analysisIn proof theory, ordinal analysis assigns ordinals (often large countable ordinals) to mathematical theories as a measure of their strength. If theories have the same proof-theoretic ordinal they are often equiconsistent, and if one theory has a larger proof-theoretic ordinal than another it can often prove the consistency of the second theory. The field of ordinal analysis was formed when Gerhard Gentzen in 1934 used cut elimination to prove, in modern terms, that the proof-theoretic ordinal of Peano arithmetic is ε0.
Primitive recursive arithmeticPrimitive recursive arithmetic (PRA) is a quantifier-free formalization of the natural numbers. It was first proposed by Norwegian mathematician , as a formalization of his finitistic conception of the foundations of arithmetic, and it is widely agreed that all reasoning of PRA is finitistic. Many also believe that all of finitism is captured by PRA, but others believe finitism can be extended to forms of recursion beyond primitive recursion, up to ε0, which is the proof-theoretic ordinal of Peano arithmetic.
Fondements des mathématiquesLes fondements des mathématiques sont les principes de la philosophie des mathématiques sur lesquels est établie cette science. Le logicisme a été prôné notamment par Gottlob Frege et Bertrand Russell. La mathématique pure présente deux caractéristiques : la généralité de son discours et la déductibilité du discours mathématique . En ce que le discours mathématique ne prétend qu’à une vérité formelle, il est possible de réduire les mathématiques à la logique, les lois logiques étant les lois du « vrai ».
Analyse constructiveL'analyse constructive est une branche des mathématiques constructives. Elle critique l'analyse mathématique classique et vise à fonder l'analyse sur des principes constructifs. Elle s'inscrit dans le courant de pensée constructiviste ou intuitionniste, dont les principaux membres ont été Kronecker, Brouwer ou Weyl. La critique porte sur la façon dont est utilisée la notion d'existence, de disjonction et sur l'utilisation du raisonnement par l'absurde.
Théorèmes d'incomplétude de GödelLes théorèmes d'incomplétude de Gödel sont deux théorèmes célèbres de logique mathématique, publiés par Kurt Gödel en 1931 dans son article (« Sur les propositions formellement indécidables des Principia Mathematica et des systèmes apparentés »). Ils ont marqué un tournant dans l'histoire de la logique en apportant une réponse négative à la question de la démonstration de la cohérence des mathématiques posée plus de 20 ans auparavant par le programme de Hilbert.
Démonstration constructiveUne première vision d'une démonstration constructive est celle d'une démonstration mathématique qui respecte les contraintes des mathématiques intuitionnistes, c'est-à-dire qui ne fait pas appel à l'infini, ni au principe du tiers exclu. Ainsi, démontrer l'impossibilité de l'inexistence d'un objet ne constitue pas une démonstration constructive de son existence : il faut pour cela en exhiber un et expliquer comment le construire. Si une démonstration est constructive, on doit pouvoir lui associer un algorithme.
Programme de HilbertLe programme de Hilbert est un programme créé par David Hilbert dans le but d'assurer les fondements des mathématiques. Les conceptions scientifiques de David Hilbert ont une grande influence sur les mathématiciens de son époque. Hilbert s'oppose fermement au pessimisme scientifique prôné en particulier par le physiologiste Emil du Bois-Reymond, pour qui il est des questions en sciences qui resteront toujours sans réponse, une doctrine connue sous le nom d'« Ignorabimus » (du latin ignoramus et ignorabimus : « Nous ne savons pas et nous ne saurons jamais »).
EquiconsistencyIn mathematical logic, two theories are equiconsistent if the consistency of one theory implies the consistency of the other theory, and vice versa. In this case, they are, roughly speaking, "as consistent as each other". In general, it is not possible to prove the absolute consistency of a theory T. Instead we usually take a theory S, believed to be consistent, and try to prove the weaker statement that if S is consistent then T must also be consistent—if we can do this we say that T is consistent relative to S.
Hiérarchie analytiqueIn mathematical logic and descriptive set theory, the analytical hierarchy is an extension of the arithmetical hierarchy. The analytical hierarchy of formulas includes formulas in the language of second-order arithmetic, which can have quantifiers over both the set of natural numbers, , and over functions from to . The analytical hierarchy of sets classifies sets by the formulas that can be used to define them; it is the lightface version of the projective hierarchy.