Dixième problème de HilbertLe dixième problème de Hilbert fait partie de la liste des 23 problèmes posés par David Hilbert en 1900 à Paris, lors de sa conférence au congrès international des mathématiciens. Il énonce : énoncé| X. — De la possibilité de résoudre une équation diophantienne. On donne une équation diophantienne à un nombre quelconque d'inconnues et à coefficients entiers rationnels : On demande de trouver une méthode par laquelle, au moyen d'un nombre fini d'opérations, on pourra distinguer si l'équation est résoluble en nombres entiers rationnels.
Formule logiqueEn logique on dit d’une suite finie de lettres qu’elle est une formule, ou parfois formule bien formée, d'un langage logique donné lorsqu’elle peut être construite en appliquant une combinaison des règles de la grammaire formelle associée, on parle de la syntaxe du langage. Informellement les formules sont les assemblages de lettres auxquels il est possible de donner une signification en termes de valeur de vérité (Vrai, ou Faux). Les formules logiques sont l'équivalent des phrases du langage naturel.
Castor affairéUn castor affairé est, en théorie de la calculabilité, une machine de Turing qui maximise son « activité opérationnelle » (comme le nombre de pas effectués ou le nombre de symboles écrits avant son arrêt) parmi toutes les machines de Turing d'une certaine classe. Celles-ci doivent satisfaire certaines spécifications et doivent s'arrêter après être lancées sur un ruban vierge. Une fonction du castor affairé, ou fonction du nombre maximal de pas quantifie cette activité maximale pour une machine de Turing à n états ; ce type de fonction n'est pas calculable.
Théorie de la calculabilitéLa théorie de la calculabilité (appelée aussi parfois théorie de la récursion) est un domaine de la logique mathématique et de l'informatique théorique. La calculabilité (parfois appelée « computationnalité », de l'anglais computability) cherche d'une part à identifier la classe des fonctions qui peuvent être calculées à l'aide d'un algorithme et d'autre part à appliquer ces concepts à des questions fondamentales des mathématiques. Une bonne appréhension de ce qui est calculable et de ce qui ne l'est pas permet de voir les limites des problèmes que peuvent résoudre les ordinateurs.
Arithmétique du second ordreEn logique mathématique, l'arithmétique du second ordre est une théorie des entiers naturels et des ensembles d'entiers naturels. Elle a été introduite par David Hilbert et Paul Bernays dans leur livre Grundlagen der Mathematik. L'axiomatisation usuelle de l'arithmétique du second ordre est notée Z2. L'arithmétique de second ordre a pour conséquence les théorèmes de l'arithmétique de Peano (du premier ordre), mais elle est à la fois plus forte et plus expressive que celle-ci.
If and only ifIn logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.