Group isomorphism problemIn abstract algebra, the group isomorphism problem is the decision problem of determining whether two given finite group presentations refer to isomorphic groups. The isomorphism problem was formulated by Max Dehn, and together with the word problem and conjugacy problem, is one of three fundamental decision problems in group theory he identified in 1911. All three problems are undecidable: there does not exist a computer algorithm that correctly solves every instance of the isomorphism problem, or of the other two problems, regardless of how much time is allowed for the algorithm to run.
Small cancellation theoryIn the mathematical subject of group theory, small cancellation theory studies groups given by group presentations satisfying small cancellation conditions, that is where defining relations have "small overlaps" with each other. Small cancellation conditions imply algebraic, geometric and algorithmic properties of the group. Finitely presented groups satisfying sufficiently strong small cancellation conditions are word hyperbolic and have word problem solvable by Dehn's algorithm.
Groupe de CoxeterUn groupe de Coxeter est un groupe engendré par des réflexions sur un espace. Les groupes de Coxeter se retrouvent dans de nombreux domaines des mathématiques et de la géométrie. En particulier, les groupes diédraux, ou les groupes d'isométries de polyèdres réguliers, sont des groupes de Coxeter. Les groupes de Weyl sont d'autres exemples de groupes de Coxeter. Ces groupes sont nommés d'après le mathématicien H.S.M. Coxeter. Un groupe de Coxeter est un groupe W ayant une présentation du type: où est à valeurs dans , est symétrique () et vérifie , si .
Problème du motLe problème du mot est un problème de décision en algèbre abstraite. Il consiste, pour une présentation donnée d'une structure algébrique, à répondre algorithmiquement (à décider) à la question suivante : étant donné une paire de termes et de la structure, est-ce que l'égalité est satisfaite ? Le premier problème de mot dont on a démontré l'indécidabilité fut le problème du mot dans les groupes. La démonstration a été annoncée par Tarski en 1949 et publiée dans le livre Undecidable Theories.
Groupe automatiqueEn mathématiques, un groupe automatique est un groupe décrit à l'aide d'automates finis. L'intérêt des groupes automatiques est que le problème du mot est décidable. C'est un cas particulier d'une structure automatique. Soit G un groupe qui admet un ensemble fini A d'éléments générateurs. Le groupe G est automatique par rapport à A s'il existe un automate M sur l'alphabet A et des automates Mx sur l'alphabet A2 pour tout x dans A ∪{e} où e est l'élément neutre tels que : le langage de l'automate M accepte au moins un représentant pour chaque élément du groupe.
Théorie combinatoire des groupesEn mathématiques, la théorie combinatoire des groupes est la théorie des groupes libres et des présentations d'un groupe par générateurs et relations. Elle est très utilisée en topologie géométrique, le groupe fondamental d'un complexe simplicial héritant, d'une façon naturelle et géométrique, d'une telle présentation. Elle est aujourd'hui englobée en grande partie par la théorie géométrique des groupes, qui utilise de plus des techniques extérieures à la combinatoire.
Transformation de NielsenEn mathématiques, et notamment dans le domaine de l'algèbre, les transformations de Nielsen sont un outil important dans la théorie combinatoire des groupes. Ce sont certains automorphismes d'un groupe libre et elles sont très utiles dans l'étude des groupes libres. Elles portent le nom du mathématicien danois Jakob Nielsen, qui les a introduites en 1921 pour prouver que tout sous-groupe d'un groupe libre est libre (le théorème de Nielsen-Schreier), et elles sont maintenant utilisées dans une variété de domaines mathématiques.
Problème de BurnsideEn mathématiques, le problème de Burnside est l'une des questions les plus anciennes et qui a eu le plus d'influence en théorie des groupes. En 1902, William Burnside demanda si un groupe de torsion de type fini est nécessairement fini. Cette conjecture fut réfutée soixante ans plus tard, ainsi que sa variante « bornée », tandis que sa variante « restreinte » a été démontrée, plus récemment, par Efim Zelmanov. De nombreux problèmes sur ces sujets sont encore ouverts aujourd'hui.