Sensory-motor coupling is the coupling or integration of the sensory system and motor system. Sensorimotor integration is not a static process. For a given stimulus, there is no one single motor command. "Neural responses at almost every stage of a sensorimotor pathway are modified at short and long timescales by biophysical and synaptic processes, recurrent and feedback connections, and learning, as well as many other internal and external variables".
The integration of the sensory and motor systems allows an animal to take sensory information and use it to make useful motor actions. Additionally, outputs from the motor system can be used to modify the sensory system's response to future stimuli. To be useful it is necessary that sensory-motor integration be a flexible process because the properties of the world and ourselves change over time. Flexible sensorimotor integration would allow an animal the ability to correct for errors and be useful in multiple situations. To produce the desired flexibility it's probable that nervous systems employ the use of internal models and efference copies.
Prior to movement, an animal's current sensory state is used to generate a motor command. To generate a motor command, first, the current sensory state is compared to the desired or target state. Then, the nervous system transforms the sensory coordinates into the motor system's coordinates, and the motor system generates the necessary commands to move the muscles so that the target state is reached.
An important aspect of sensorimotor integration is the efference copy. The efference copy is a copy of a motor command that is used in internal models to predict what the new sensory state will be after the motor command has been completed. The efference copy can be used by the nervous system to distinguish self-generated environmental changes, compare an expected response to what actually occurs in the environment, and to increase the rate at which a command can be issued by predicting an organism's state prior to receiving sensory input.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The course gives (1) a review of different types of numerical models of control of locomotion and movement in animals, (2) a presentation of different techniques for designing models, and (3) an analy
This course integrates knowledge in basic, systems, clinical and computational neuroscience, and engineering with the goal of translating this integrated knowledge into the development of novel method
The course starts with fundamentals of electrical - and chemical signaling in neurons. Students then learn how neurons in the brain receive and process sensory information, and how other neurons contr
La planification motrice est un processus cognitif et psychomoteur, permettant d’élaborer un mouvement volontaire et de l’organiser en séquences avant de l’exécuter . Pour ce faire, avant chaque mouvement, le cerveau établit un plan moteur composé d’images mentales qui s’enchaînent . Cela est possible parce qu’il s’agit d’un automatisme qui anticipe le résultat de chaque mouvement. Lors de l’étape suivante, le cerveau spécifie les paramètres du mouvement, c’est-à-dire les éléments spatio-temporels (direction, force, amplitude, vitesse) et visuo-spatiaux qui orienteront l’action .
. Les approches basées sur les théories de l’apprentissage moteur tiennent habituellement compte de quatre variables principales: les étapes d’apprentissage, le type de tâche à réaliser, la pratique et le feedback. Le processus d’apprentissage moteur comprend trois stades. Le premier est le stade cognitif, c’est-à-dire que l’individu connaît chaque séquence de la tâche à réaliser, mais il ne sait pas exactement comment l’exécuter. Ensuite, il y a le stade associatif, qui correspond au raffinement des habiletés motrices et à la diminution d’erreurs.
Le 'cerveau humain' a la même structure générale que le cerveau des autres mammifères, mais il est celui dont la taille relative par rapport au reste du corps est devenue la plus grande au cours de l'évolution. Si la baleine bleue a le cerveau le plus lourd avec contre environ pour celui de l'homme, le coefficient d'encéphalisation humain est le plus élevé et est sept fois supérieur à celui de la moyenne des mammifères.
Explore les moteurs synchrones dans les entraînements électriques, couvrant l'auto-commutation, la détection de la position du rotor, les options de capteur et les modes de commutation.
The recollection of sensory information and subjective experience related to a personal past event depends on our episodic memory (EM). At the neural level, EM retrieval is linked with the reinstatement of hippocampal activity thought to recollect the sens ...
EPFL2023
, , , , ,
The decline of motor ability is a hallmark feature of aging and is accompanied by degeneration of motor synaptic terminals. Consistent with this, Drosophila motor synapses undergo characteristic age -dependent structural fragmentation co -incident with dim ...
Cell Press2024
Recent work suggests that serial dependence, where perceptual decisions are biased toward previous stimuli, arises from the prior that sensory input is temporally correlated. However, existing studies have mostly used random stimulus sequences that do not ...