Espace de Hilbertvignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.
Fredholm theoryIn mathematics, Fredholm theory is a theory of integral equations. In the narrowest sense, Fredholm theory concerns itself with the solution of the Fredholm integral equation. In a broader sense, the abstract structure of Fredholm's theory is given in terms of the spectral theory of Fredholm operators and Fredholm kernels on Hilbert space. The theory is named in honour of Erik Ivar Fredholm. The following sections provide a casual sketch of the place of Fredholm theory in the broader context of operator theory and functional analysis.
Decomposition of spectrum (functional analysis)The spectrum of a linear operator that operates on a Banach space is a fundamental concept of functional analysis. The spectrum consists of all scalars such that the operator does not have a bounded inverse on . The spectrum has a standard decomposition into three parts: a point spectrum, consisting of the eigenvalues of ; a continuous spectrum, consisting of the scalars that are not eigenvalues but make the range of a proper dense subset of the space; a residual spectrum, consisting of all other scalars in the spectrum.
Spectral theory of ordinary differential equationsIn mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite.
Alternative de FredholmEn analyse fonctionnelle — une branche des mathématiques —, l’alternative de Fredholm, qui généralise l'un des théorèmes d'Ivar Fredholm — systématisés par Friedrich Riesz —, est un résultat de la donc de la . Motivée par l'étude de certaines équations intégrales, elle a fait émerger la notion d'opérateur de Fredholm. Elle énonce entre autres que tout scalaire non nul du spectre d'un opérateur compact est une valeur propre de cet opérateur. L'alternative de Fredholm est la suivante : Autrement dit : T – λId est injectif si et seulement s'il est surjectif.
Riesz projectorIn mathematics, or more specifically in spectral theory, the Riesz projector is the projector onto the eigenspace corresponding to a particular eigenvalue of an operator (or, more generally, a projector onto an invariant subspace corresponding to an isolated part of the spectrum). It was introduced by Frigyes Riesz in 1912. Let be a closed linear operator in the Banach space . Let be a simple or composite rectifiable contour, which encloses some region and lies entirely within the resolvent set () of the operator .
Operator theoryIn mathematics, operator theory is the study of linear operators on function spaces, beginning with differential operators and integral operators. The operators may be presented abstractly by their characteristics, such as bounded linear operators or closed operators, and consideration may be given to nonlinear operators. The study, which depends heavily on the topology of function spaces, is a branch of functional analysis. If a collection of operators forms an algebra over a field, then it is an operator algebra.
Théorie spectraleEn mathématiques, et plus particulièrement en analyse, une théorie spectrale est une théorie étendant à des opérateurs définis sur des espaces fonctionnels généraux la théorie élémentaire des valeurs propres et des vecteurs propres de matrices. Bien que ces idées viennent au départ du développement de l'algèbre linéaire, elles sont également liées à l'étude des fonctions analytiques, parce que les propriétés spectrales d'un opérateur sont liées à celles de fonctions analytiques sur les valeurs de son spectre.
Spectre d'un opérateur linéaireEn mathématiques, plus précisément en analyse fonctionnelle, le spectre d'un opérateur linéaire sur un espace vectoriel topologique est l'ensemble de ses valeurs spectrales. En dimension finie, cet ensemble se réduit à l'ensemble des valeurs propres de cet endomorphisme, ou de sa matrice dans une base. En et en mécanique quantique, la notion de spectre s'étend aux opérateurs non bornés fermés. Soit une algèbre de Banach unifère sur le corps des nombres complexes.
Fonction de GreenEn mathématiques et en physique, une fonction de Green est une solution (également appelée solution élémentaire ou solution fondamentale) d'une équation différentielle linéaire à coefficients constants, ou d'une équation aux dérivées partielles linéaire à coefficients constants. Ces « fonctions » de Green, qui se trouvent être le plus souvent des distributions, ont été introduites par George Green en 1828 pour les besoins de l'électromagnétisme. Le mémoire de Green restera confidentiel jusqu'à sa republication en trois parties, à partir de 1850.