Résumé
En mathématiques, le théorème des nombres pentagonaux, dû au mathématicien suisse Euler, est le théorème qui établit le développement en série formelle de la fonction d'Euler : Autrement dit : Le nom du théorème vient de la forme des exposants dans le membre droit de l'égalité : ces nombres sont les nombres pentagonaux généralisés. Le théorème des nombres pentagonaux est un cas particulier de l'identité du triple produit de Jacobi. Ce théorème a une interprétation combinatoire en termes de partitions. En particulier, le membre de gauche est une fonction génératrice (pour des raisons similaires sur les fonctions génératrices pour des fonctions de partage non restreintes plus générales) du nombre de décompositions de n en un nombre pair de parties distinctes moins le nombre de décompositions de n en un nombre impair de parties distinctes : quand on explicite les produits du membre gauche de l'égalité, l'exposant n d'un terme xn est obtenu en sommant les diverses façon de décomposer n en parties distinctes. Le signe dépend du nombre de parties. Par exemple, le coefficient de x5 est 1 parce qu'il existe deux manières de scinder 5 en un nombre pair de parties distinctes (4 + 1 et 3 + 2), mais seulement une manière de le faire pour un nombre impair de parties distinctes (5 lui-même). Le membre de droite, une fois l'identité prouvée, dit qu'il y a autant de partitions d'un entier en un nombre pair de parties distinctes qu'en un nombre impair de parties distinctes, sauf si l'entier est un nombre pentagonal généralisé. Par exemple, le coefficient de x6 est 0, et les partitions sont 6, 5 + 1, 4 + 2, 3 + 2 + 1 : il y en a bien autant (2) qui ont un nombre pair de parties et qui ont un nombre impair de parties. Cette interprétation conduit à une nouvelle démonstration de l'identité par involution, trouvée en 1881 par Fabian Franklin. Considérons le diagramme de Ferrers de n'importe quelle décomposition de n en parties distinctes (dans le diagramme ci-dessous n = 20 et la décomposition est 7 + 6 + 4 + 3).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (2)
Concepts associés (8)
Fonction d'Euler
thumb|right|Module de dans le plan complexe, coloré de sorte que noir=0, rouge=4. En mathématiques, la fonction d'Euler est donnée par Elle est nommée d'après Leonhard Euler, et elle constitue un exemple type du q-analogue d'une série. C'est une forme modulaire, et elle fournit un exemple typique d'interaction entre combinatoire et analyse complexe. On peut écrire la définition de comme produit infini de façon compacte grâce au symbole de Pochhammer : Le coefficient du développement en série formelle de est le nombre de partitions de l'entier .
Partition function (number theory)
In number theory, the partition function p(n) represents the number of possible partitions of a non-negative integer n. For instance, p(4) = 5 because the integer 4 has the five partitions 1 + 1 + 1 + 1, 1 + 1 + 2, 1 + 3, 2 + 2, and 4. No closed-form expression for the partition function is known, but it has both asymptotic expansions that accurately approximate it and recurrence relations by which it can be calculated exactly. It grows as an exponential function of the square root of its argument.
Q-symbole de Pochhammer
En combinatoire, le q-symbole de Pochhammer est un symbole permettant de noter facilement certains produits. C'est l'élément de base des q-analogues. C'est le q-analogue du symbole de Pochhammer défini par Leo Pochhammer. Le q-symbole de Pochhammer est : avec On peut étendre la notation à des produits infinis : On note parfois , lorsqu'il est clair que la variable est q. Un grand nombre de séries génératrices représentant des partitions peuvent être exprimées de façon compacte avec ces symboles.
Afficher plus