Publications associées (53)

Near-Minimax Optimal Estimation With Shallow ReLU Neural Networks

Rahul Parhi

We study the problem of estimating an unknown function from noisy data using shallow ReLU neural networks. The estimators we study minimize the sum of squared data-fitting errors plus a regularization term proportional to the squared Euclidean norm of the ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2023

The inductive bias of deep learning: Connecting weights and functions

Guillermo Ortiz Jimenez

Years of a fierce competition have naturally selected the fittest deep learning algorithms. Yet, although these models work well in practice, we still lack a proper characterization of why they do so. This poses serious questions about the robustness, trus ...
EPFL2023

Understanding Deep Neural Function Approximation in Reinforcement Learning via ϵ-Greedy Exploration

Volkan Cevher, Fanghui Liu, Luca Viano

This paper provides a theoretical study of deep neural function approximation in reinforcement learning (RL) with the ϵ-greedy exploration under the online setting. This problem setting is motivated by the successful deep Q-networks (DQN) framework that fa ...
2022

Linear Lipschitz and C-1 extension operators through random projection

Federico Stra

We construct a regular random projection of a metric space onto a closed doubling subset and use it to linearly extend Lipschitz and C-1 functions. This way we prove more directly a result by Lee and Naor [5] and we generalize the C-l extension theorem by ...
ACADEMIC PRESS INC ELSEVIER SCIENCE2021

MATHICSE Technical Report: Existence of dynamical low rank approximations for random semi-linear evolutionary equations on the maximal interval

Fabio Nobile, Yoshihito Kazashi

An existence result is presented for the dynamical low rank (DLR) approximation for random semi-linear evolutionary equations. The DLR solution approximates the true solution at each time instant by a linear combination of products of deterministic and sto ...
MATHICSE2020

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.