Publication

MATHICSE Technical Report: Existence of dynamical low rank approximations for random semi-linear evolutionary equations on the maximal interval

Fabio Nobile, Yoshihito Kazashi
2020
Rapport ou document de travail
Résumé

An existence result is presented for the dynamical low rank (DLR) approximation for random semi-linear evolutionary equations. The DLR solution approximates the true solution at each time instant by a linear combination of products of deterministic and stochastic basis functions, both of which evolve over time. A key to our proof is to find a suitable equivalent formulation of the original problem. The so-called Dual Dynamically Orthogonal formulation turns out to be convenient. Based on this formulation, the DLR approximation is recast to an abstract Cauchy problem in a suitable linear space, for which existence and uniqueness of the solution in the maximal interval are established.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.