Publication

MATHICSE Technical Report : Regularity and sparse approximation of the recursive first moment equations for the lognormal Darcy problem

Fabio Nobile, Francesca Bonizzoni
2020
Rapport ou document de travail
Résumé

We study the Darcy boundary value problem with log-normal permeability field. We adopt a perturbation approach, expanding the solution in Taylor series around the nominal value of the coefficient, and approximating the expected value of the stochastic solution of the PDE by the expected value of its Taylor polynomial. The recursive deterministic equation satisfied by the expected value of the Taylor polynomial (first moment equation) is formally derived. Well-posedness and regularity results for the recursion are proved to hold in Sobolev space-valued Hölder spaces with mixed regularity. The recursive first moment equation is then discretized by means of a sparse approximation technique, and the convergence rates are derived.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (32)
Série de Taylor
thumb|Brook Taylor, dont la série porte le nom. En mathématiques, et plus précisément en analyse, la série de Taylor au point d'une fonction (réelle ou complexe) indéfiniment dérivable en ce point, appelée aussi le développement en série de Taylor de en , est une série entière approchant la fonction autour de , construite à partir de et de ses dérivées successives en . Elles portent le nom de Brook Taylor, qui les a introduites en 1715.
Sparse approximation
Sparse approximation (also known as sparse representation) theory deals with sparse solutions for systems of linear equations. Techniques for finding these solutions and exploiting them in applications have found wide use in , signal processing, machine learning, medical imaging, and more. Consider a linear system of equations , where is an underdetermined matrix and . The matrix (typically assumed to be full-rank) is referred to as the dictionary, and is a signal of interest.
Sparse dictionary learning
Sparse dictionary learning (also known as sparse coding or SDL) is a representation learning method which aims at finding a sparse representation of the input data in the form of a linear combination of basic elements as well as those basic elements themselves. These elements are called atoms and they compose a dictionary. Atoms in the dictionary are not required to be orthogonal, and they may be an over-complete spanning set. This problem setup also allows the dimensionality of the signals being represented to be higher than the one of the signals being observed.
Afficher plus
Publications associées (33)

Regularity and sparse approximation of the recursive first moment equations for the lognormal Darcy problem

Fabio Nobile, Francesca Bonizzoni

We study the Darcy boundary value problem with lognormal permeability field. We adopt a perturbation approach, expanding the solution in Taylor series around the nominal value of the coefficient, and approximating the expected value of the stochastic solut ...
2020

Dictionary Learning for Two-Dimensional Kendall Shapes

Michaël Unser, Julien René Pierre Fageot, Virginie Sophie Uhlmann, Anna You-Lai Song

We propose a novel sparse dictionary learning method for planar shapes in the sense of Kendall, namely configurations of landmarks in the plane considered up to similitudes. Our shape dictionary method provides a good trade-off between algorithmic simplici ...
SIAM PUBLICATIONS2020

Multiple ergodic averages along functions from a Hardy field: convergence, recurrence and combinatorial applications

Florian Karl Richter

We obtain new results pertaining to convergence and recurrence of multiple ergodic averages along functions from a Hardy field. Among other things, we confirm some of the conjectures posed by Frantzikinakis in [Fra10; Fra16] and obtain combinatorial applic ...
2020
Afficher plus
MOOCs associés (9)
Analyse I
Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond
Analyse I (partie 1) : Prélude, notions de base, les nombres réels
Concepts de base de l'analyse réelle et introduction aux nombres réels.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.