Concepts associés (16)
Frobenius inner product
In mathematics, the Frobenius inner product is a binary operation that takes two matrices and returns a scalar. It is often denoted . The operation is a component-wise inner product of two matrices as though they are vectors, and satisfies the axioms for an inner product. The two matrices must have the same dimension - same number of rows and columns, but are not restricted to be square matrices. Given two complex number-valued n×m matrices A and B, written explicitly as the Frobenius inner product is defined as, where the overline denotes the complex conjugate, and denotes Hermitian conjugate.
Vectorization (mathematics)
In mathematics, especially in linear algebra and matrix theory, the vectorization of a matrix is a linear transformation which converts the matrix into a vector. Specifically, the vectorization of a m × n matrix A, denoted vec(A), is the mn × 1 column vector obtained by stacking the columns of the matrix A on top of one another: Here, represents the element in the i-th row and j-th column of A, and the superscript denotes the transpose. Vectorization expresses, through coordinates, the isomorphism between these (i.
Produit de Kronecker
En mathématiques, le produit de Kronecker est une opération portant sur les matrices. Il s'agit d'un cas particulier du produit tensoriel. Il est ainsi dénommé en hommage au mathématicien allemand Leopold Kronecker. Soient A une matrice de taille m x n et B une matrice de taille p x q. Leur produit tensoriel est la matrice A ⊗ B de taille mp par nq, définie par blocs successifs de taille p x q, le bloc d'indice i,j valant a B En d'autres termes Ou encore, en détaillant les coefficients, Comme le montre l'exemple ci-dessous, le produit de Kronecker de deux matrices consiste à recopier plusieurs fois la deuxième matrice, en la multipliant par le coefficient correspondant à un terme de la première matrice.
NumPy
NumPy est une bibliothèque pour langage de programmation Python, destinée à manipuler des matrices ou tableaux multidimensionnels ainsi que des fonctions mathématiques opérant sur ces tableaux. Plus précisément, cette bibliothèque logicielle libre et open source fournit de multiples fonctions permettant notamment de créer directement un tableau depuis un fichier ou au contraire de sauvegarder un tableau dans un fichier, et manipuler des vecteurs, matrices et polynômes.
Rétropropagation du gradient
En intelligence artificielle, plus précisément en apprentissage automatique, la rétropropagation du gradient est une méthode pour entraîner un réseau de neurones. Elle consiste à mettre à jour les poids de chaque neurone de la dernière couche vers la première. Elle vise à corriger les erreurs selon l'importance de la contribution de chaque élément à celles-ci. Dans le cas des réseaux de neurones, les poids synaptiques qui contribuent plus à une erreur seront modifiés de manière plus importante que les poids qui provoquent une erreur marginale.
Outer product
In linear algebra, the outer product of two coordinate vectors is the matrix whose entries are all products of an element in the first vector with an element in the second vector. If the two coordinate vectors have dimensions n and m, then their outer product is an n × m matrix. More generally, given two tensors (multidimensional arrays of numbers), their outer product is a tensor. The outer product of tensors is also referred to as their tensor product, and can be used to define the tensor algebra.
Matrice identité
En mathématiques, plus précisement en algèbre linéaire, une matrice identité ou matrice unité est une matrice carrée diagonale dont la diagonale principale est remplie de , et dont les autres coefficients valent . Elle peut s'écrire : La matrice identité de taille se note : Il est possible de noter les coefficients de la matrice identité d'ordre avec le delta de Kronecker : avec Les matrices identité sont des matrices unitaires et sont donc inversibles et normales.
Matrice (mathématiques)
thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
Trace (algèbre)
En algèbre linéaire, la trace d'une matrice carrée A est définie comme la somme de ses coefficients diagonaux et souvent notée Tr(A). La trace peut être vue comme une forme linéaire sur l'espace vectoriel des matrices. Elle vérifie l'identité : Tr(AB) = Tr(BA), et est en conséquence invariante par similitude. De façon voisine, si u est un endomorphisme d'un espace vectoriel de dimension finie sur un corps commutatif K, on peut définir la trace de l'opérateur u, par exemple comme trace de sa matrice dans n'importe quelle base.
Produit matriciel
Le produit matriciel désigne la multiplication de matrices, initialement appelé la « composition des tableaux ». Il s'agit de la façon la plus fréquente de multiplier des matrices entre elles. En algèbre linéaire, une matrice A de dimensions m lignes et n colonnes (matrice m×n) représente une application linéaire ƒ d'un espace de dimension n vers un espace de dimension m. Une matrice colonne V de n lignes est une matrice n×1, et représente un vecteur v d'un espace vectoriel de dimension n. Le produit A×V représente ƒ(v).

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.