Concepts associés (23)
Absoluteness (logic)
In mathematical logic, a formula is said to be absolute to some class of structures (also called models), if it has the same truth value in each of the members of that class. One can also speak of absoluteness of a formula between two structures, if it is absolute to some class which contains both of them.. Theorems about absoluteness typically establish relationships between the absoluteness of formulas and their syntactic form. There are two weaker forms of partial absoluteness.
Ensemble club
En théorie des ensembles, une partie d'un ordinal limite est dite club (de l'anglais closed unbounded) si elle est fermée pour la topologie de l'ordre et non bornée. Les clubs sont des objets combinatoires importants en théorie des ensembles. Soit un ordinal limite et soit une partie de . On dit que est une partie club dans , ou encore est club dans , ou juste est club s'il n'y a pas d’ambiguïté, si les deux conditions suivantes sont satisfaites : est fermée pour la topologie de l'ordre sur , c'est-à-dire que pour tout , si , alors .
Axiome de limitation de taille
En théorie des ensembles, plus précisément en théorie des classes, l'axiome de limitation de taille a été proposé par John von Neumann dans le cadre de sa théorie des classes. Il formalise en partie le principe de limitation de taille (traduction de l'anglais limitation of size), l'un des principes énoncés par Bertrand Russell pour développer la théorie des ensembles en évitant les paradoxes, et qui reprend des idées de Georg Cantor.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.