In probability and statistics, the Tweedie distributions are a family of probability distributions which include the purely continuous normal, gamma and inverse Gaussian distributions, the purely discrete scaled Poisson distribution, and the class of compound Poisson–gamma distributions which have positive mass at zero, but are otherwise continuous. Tweedie distributions are a special case of exponential dispersion models and are often used as distributions for generalized linear models.
Background selection describes the loss of genetic diversity at a non-deleterious locus due to negative selection against linked deleterious alleles. It is one form of linked selection, where the maintenance or removal of an allele from a population is dependent upon the alleles in its linkage group. The name emphasizes the fact that the genetic background, or genomic environment, of a neutral mutation has a significant impact on whether it will be preserved (genetic hitchhiking) or purged (background selection) from a population.
The effective population size (Ne) is a number that, in some simplified scenarios, corresponds to the number of breeding individuals in the population. More generally, Ne is the number of individuals that an idealised population would need to have in order for some specified quantity of interest (typically change of genetic diversity or inbreeding rates) to be the same as in the real population. Idealised populations are based on unrealistic but convenient simplifications such as random mating, simultaneous birth of each new generation, constant population size, and equal numbers of children per parent.
In population genetics an idealised population is one that can be described using a number of simplifying assumptions. Models of idealised populations are either used to make a general point, or they are fit to data on real populations for which the assumptions may not hold true. For example, coalescent theory is used to fit data to models of idealised populations. The most common idealized population in population genetics is described in the Wright-Fisher model after Sewall Wright and Ronald Fisher (1922, 1930) and (1931).
vignette|Within a family, linkage occurs when two genetic markers (points on a chromosome) remain linked on a chromosome rather than being broken apart by recombination events during meiosis, shown as red lines. In a population, contiguous stretches of founder chromosomes from the initial generation are sequentially reduced in size by recombination events. Over time, a pair of markers or points on a chromosome in the population move from linkage disequilibrium to linkage equilibrium, as recombination events eventually occur between every possible point on the chromosome.
La génétique des populations (GDP) est l'étude de la distribution et des changements de la fréquence des versions d'un gène (allèles) dans les populations d'êtres vivants, sous l'influence des « pressions évolutives » (sélection naturelle, dérive génétique, recombinaison, mutation, et migration). Les changements de fréquence des allèles sont un aspect majeur de l'évolution, la fixation de certains allèles conduit à une modification génétique de la population, et l'accumulation de tels changements dans différentes populations peut conduire au processus de spéciation.
En biologie de l'évolution, le concept de dernier ancêtre commun (DAC) à deux lignées d'êtres vivants, ou cénancêtre, correspond à l'espèce la plus récente que ces deux taxons ont pour ancêtre commun. Cette espèce, qui correspond au dernier nœud de l'arbre phylogénétique à partir duquel divergent les branches de chacune des lignées en question, est le plus souvent difficilement identifiable dans la pratique. Le dernier ancêtre commun à deux ou plusieurs individus est une notion distincte qu'il importe de ne pas confondre avec la précédente.
La dérive génétique est l'évolution d'une population ou d'une espèce causée par des événements aléatoires, impossibles à prévoir. Du point de vue génétique, c'est la modification de la fréquence d'un allèle, ou d'un génotype, au sein d'une population, indépendamment des mutations, de la sélection naturelle et des migrations. La dérive génétique est causée par des événements aléatoires et imprévisibles, comme le hasard des rencontres des spermatozoïdes et des ovules, dans le cas d'une reproduction sexuée.
En génétique des populations, le flux génétique, aussi nommé flux de gènes ou migration des gènes, est l'échange de gènes ou de leurs allèles entre différentes populations apparentées en raison de la migration d'individus fertiles ou de leurs gamètes. Les flux génétiques ont généralement lieu au sein d’une même espèce, bien que différents exemples de flux de gènes interspécifiques existent . Dans tous ces cas, ils jouent un rôle majeur dans l’organisation spatiale de la diversité génétique et représentent à ce titre une force évolutive importante.
La , aussi appelée « théorie de la mutation et de la dérive aléatoire », est une théorie de l'évolution moléculaire selon laquelle la plupart des mutations sont neutres et ont une influence négligeable sur la valeur sélective. Elle explique la diversité génétique par la dérive génétique principalement, et ne donne qu'un rôle ponctuel à la sélection naturelle, sans contester cependant la prépondérance de celle-ci du point de vue de l'évolution morphologique.