Concept

Test de condensation de Cauchy

Résumé
In mathematics, the Cauchy condensation test, named after Augustin-Louis Cauchy, is a standard convergence test for infinite series. For a non-increasing sequence of non-negative real numbers, the series converges if and only if the "condensed" series converges. Moreover, if they converge, the sum of the condensed series is no more than twice as large as the sum of the original. The Cauchy condensation test follows from the stronger estimate, which should be understood as an inequality of extended real numbers. The essential thrust of a proof follows, patterned after Oresme's proof of the divergence of the harmonic series. To see the first inequality, the terms of the original series are rebracketed into runs whose lengths are powers of two, and then each run is bounded above by replacing each term by the largest term in that run. That term is always the first one, since by assumption the terms are non-increasing. To see the second inequality, these two series are again rebracketed into runs of power of two length, but "offset" as shown below, so that the run of which begins with lines up with the end of the run of which ends with , so that the former stays always "ahead" of the latter. The "condensation" transformation recalls the integral variable substitution yielding . Pursuing this idea, the integral test for convergence gives us, in the case of monotone , that converges if and only if converges. The substitution yields the integral . We then notice that , where the right hand side comes from applying the integral test to the condensed series . Therefore, converges if and only if converges. The test can be useful for series where n appears as in a denominator in f. For the most basic example of this sort, the harmonic series is transformed into the series , which clearly diverges. As a more complex example, take Here the series definitely converges for a > 1, and diverges for a < 1. When a = 1, the condensation transformation gives the series The logarithms "shift to the left".
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.