Résumé
En mathématiques, la notion de série permet de généraliser la notion de somme finie. Étant donné une suite de terme général u, étudier la série de terme général u c'est étudier la suite obtenue en prenant la somme des premiers termes de la suite (u), autrement dit la suite de terme général S défini par : L'étude d'une série peut passer par la recherche d'une écriture simplifiée des sommes finies en jeu et par la recherche éventuelle d'une limite finie quand n tend vers l'infini. Quand cette limite existe, la série est dite convergente, et la limite de la suite (S) est alors appelée somme de la série, et notée . Le calcul d'une somme finie ne pouvant pas toujours être simplifié, un certain nombre de méthodes permettent de déterminer la nature (convergence ou non) d'une série sans réaliser explicitement les calculs. Toutefois, certaines règles de calcul sur les sommes finies ne sont pas nécessairement conservées par cette notion de série, comme la commutativité ou l'associativité, c'est-à-dire la possibilité de permuter les termes de la suite ou de regrouper certains d'entre eux sans modifier ni la convergence ni la somme de la série. La notion de série peut être étendue à des sommes infinies dont les termes u ne sont pas nécessairement des nombres, mais par exemple des vecteurs, des fonctions ou des matrices. Une série de terme général x peut être définie formellement comme le couple formé des deux suites et . Le terme d'ordre n de la seconde suite, , est la somme des n + 1 premiers termes de la suite , appelé également somme partielle d'ordre n. La suite est appelée suite des sommes partielles de la série de terme x. Ainsi, la suite des sommes partielles associée à la série de terme général x peut s'écrire : Les séries numériques sont les séries dont les termes x sont des nombres réels ou des nombres complexes. Il existe également des séries vectorielles, dont les termes sont des vecteurs d'un certain espace vectoriel. On peut ainsi étudier par exemple des séries de matrices ou des séries de fonctions.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.