Explore l'intégrabilité uniforme, les théorèmes de convergence et l'importance des séquences bornées dans la compréhension de la convergence des variables aléatoires.
Explore l'intégrale de Lebesgue, où fonctionne les partitions auto-sélectionnées, conduisant à des ensembles mesurables et des complexités non mesurables.
Explore l'estimation des erreurs a priori dans la méthode des éléments finis, couvrant l'analyse de convergence, l'orthogonalité, les formulations faibles et la précision optimale.