Résumé
In neuroscience, single-unit recordings (also, single-neuron recordings) provide a method of measuring the electro-physiological responses of a single neuron using a microelectrode system. When a neuron generates an action potential, the signal propagates down the neuron as a current which flows in and out of the cell through excitable membrane regions in the soma and axon. A microelectrode is inserted into the brain, where it can record the rate of change in voltage with respect to time. These microelectrodes must be fine-tipped, impedance matching; they are primarily glass micro-pipettes, metal microelectrodes made of platinum, tungsten, iridium or even iridium oxide. Microelectrodes can be carefully placed close to the cell membrane, allowing the ability to record extracellularly. Single-unit recordings are widely used in cognitive science, where it permits the analysis of human cognition and cortical mapping. This information can then be applied to brain–machine interface (BMI) technologies for brain control of external devices. There are many techniques available to record brain activity—including electroencephalography (EEG), magnetoencephalography (MEG), and functional magnetic resonance imaging (fMRI)—but these do not allow for single-neuron resolution. Neurons are the basic functional units in the brain; they transmit information through the body using electrical signals called action potentials. Currently, single-unit recordings provide the most precise recordings from a single neuron. A single unit is defined as a single, firing neuron whose spike potentials are distinctly isolated by a recording microelectrode. The ability to record signals from neurons is centered around the electric current flow through the neuron. As an action potential propagates through the cell, the electric current flows in and out of the soma and axons at excitable membrane regions. This current creates a measurable, changing voltage potential within (and outside) the cell. This allows for two basic types of single-unit recordings.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.