Graphe circulantEn théorie des graphes, un graphe circulant est un graphe non orienté sur lequel agit un groupe cyclique d'automorphismes de graphes qui en fait un graphe sommet-transitif. On trouve aussi l'appellation graphe cyclique mais ce terme aussi d'autres significations. Il y a plusieurs manières équivalentes de définir les graphes circulants ; un graphe est circulant lorsque le groupe d'automorphisme du graphe admet un sous-groupe cyclique qui agit de manière transitive sur les sommets du graphe.
Growth rate (group theory)In the mathematical subject of geometric group theory, the growth rate of a group with respect to a symmetric generating set describes how fast a group grows. Every element in the group can be written as a product of generators, and the growth rate counts the number of elements that can be written as a product of length n. Suppose G is a finitely generated group; and T is a finite symmetric set of generators (symmetric means that if then ).
Examples of groupsSome elementary examples of groups in mathematics are given on Group (mathematics). Further examples are listed here. Dihedral group of order 6 Consider three colored blocks (red, green, and blue), initially placed in the order RGB. Let a be the operation "swap the first block and the second block", and b be the operation "swap the second block and the third block". We can write xy for the operation "first do y, then do x"; so that ab is the operation RGB → RBG → BRG, which could be described as "move the first two blocks one position to the right and put the third block into the first position".
Théorème de FruchtFrucht's theorem is a theorem in algebraic graph theory conjectured by Dénes Kőnig in 1936 and proved by Robert Frucht in 1939. It states that every finite group is the group of symmetries of a finite undirected graph. More strongly, for any finite group G there exist infinitely many non-isomorphic simple connected graphs such that the automorphism group of each of them is isomorphic to G. The main idea of the proof is to observe that the Cayley graph of G, with the addition of colors and orientations on its edges to distinguish the generators of G from each other, has the desired automorphism group.
Small cancellation theoryIn the mathematical subject of group theory, small cancellation theory studies groups given by group presentations satisfying small cancellation conditions, that is where defining relations have "small overlaps" with each other. Small cancellation conditions imply algebraic, geometric and algorithmic properties of the group. Finitely presented groups satisfying sufficiently strong small cancellation conditions are word hyperbolic and have word problem solvable by Dehn's algorithm.
Quasi-isometryIn mathematics, a quasi-isometry is a function between two metric spaces that respects large-scale geometry of these spaces and ignores their small-scale details. Two metric spaces are quasi-isometric if there exists a quasi-isometry between them. The property of being quasi-isometric behaves like an equivalence relation on the class of metric spaces. The concept of quasi-isometry is especially important in geometric group theory, following the work of Gromov.