MATH-602: Inference on graphsThe class covers topics related to statistical inference and algorithms on graphs: basic random graphs concepts, thresholds, subgraph containment (planted clique), connectivity, broadcasting on trees,
MATH-467: Probabilistic methods in combinatoricsThe 'probabilistic method' is a fundamental tool in combinatorics. The basic idea is as follows: to prove that an object (for example, graph) with certain properties exists, it suffices to prove that
MGT-529: Data science and machine learning IIThis class discusses advanced data science and machine learning (ML) topics: Recommender Systems, Graph Analytics, and Deep Learning, Big Data, Data Clouds, APIs, Clustering. The course uses the Wol
MATH-455: Combinatorial statisticsThe class will cover statistical models and statistical learning problems involving discrete structures. It starts with an overview of basic random graphs and discrete probability results. It then cov
MATH-425: Spatial statisticsIn this course we will focus on stochastic approaches for modelling phenomena taking place in multivariate spaces. Our main focus will be on random field models and on statistical methods for model-ba
CS-449: Systems for data scienceThe course covers fundamental principles for understanding and building systems for managing and analyzing large amounts of data.