Résumé
En mathématiques, une équation fonctionnelle est une équation dont les inconnues sont des fonctions. De nombreuses propriétés de fonctions peuvent être déterminées en étudiant les équations auxquelles elles satisfont. D'habitude, le terme « équation fonctionnelle » est réservé aux équations qu'on ne peut pas ramener à des équations plus simples, par exemple à des équations différentielles. Le cas le plus fréquent est celui où les valeurs d'une fonction et éventuellement de ses dérivées, calculées en plusieurs points, doivent satisfaire une relation, dite relation fonctionnelle, pour toutes les valeurs de la variable (du moins sur un certain domaine). Deux approches distinctes sont possibles : lorsqu'on étudie une fonction en particulier, il peut être utile de mettre en évidence une relation fonctionnelle qu'elle satisfait, comme la relation satisfaite par la fonction gamma d'Euler, ou celle satisfaite par la fonction zêta de Riemann : . On en déduit ensuite d'autres propriétés de la fonction : par exemple que la fonction zêta de Riemann s'annule aux nombres entiers strictement négatifs pairs, et ne possède pas d'autres zéros en dehors de la bande 0 < Re(s) < 1 ; lorsqu'on résout une équation fonctionnelle à proprement parler, on étudie l'ensemble des fonctions satisfaisant une relation donnée. Un exemple est la recherche des fonctions vérifiant (où a, b, c et d sont des entiers naturels vérifiant ad − bc = 1) qu'on appelle des formes modulaires. Il arrive que certaines conditions analytiques soient exigées. Le théorème de Bohr-Mollerup en est un exemple. En l'absence de ces conditions, une équation fonctionnelle très simple comme l'équation fonctionnelle de Cauchy peut avoir des solutions très irrégulières. Lorsque l'équation relie les valeurs d'une fonction et de ses dérivées en un même point, elle est appelée équation différentielle. D'autres équations utilisent des propriétés globales des fonctions inconnues ; on parle par exemple d'équations intégrales, ou de problèmes d'optimisation (lesquels sont l'objet du calcul des variations), comme le problème de Plateau.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (40)