Un heptagone est un polygone à sept sommets, donc sept côtés et quatorze diagonales.
La somme des angles internes d'un heptagone non croisé vaut .
Un heptagone régulier est un heptagone dont tous les côtés sont égaux et dont tous les angles internes sont égaux. Il y en a trois : deux étoilés (les heptagrammes réguliers) et un convexe. C'est de ce dernier qu'il s'agit lorsqu'on parle de « l'heptagone régulier ».
L'heptagone régulier est le plus petit des polygones réguliers non constructibles à la règle et au compas. Il est cependant possible de réaliser une construction à la règle et au compas si l'on s'aide d'autres outils géométriques ou si la règle peut être graduée (construction par neusis). Il est aussi possible d'en tracer une version approchée, aux erreurs faibles, avec le compas et la règle non graduée.
Les angles internes sont tous égaux à .
Les angles au centre sont tous égaux à .
Si le côté a pour longueur a :
le rayon r du cercle circonscrit est égal à
le rayon r du cercle inscrit est égal à
l'aire est égale à
L'heptagone régulier n'est pas constructible à la règle et au compas car le nombre premier 7 n'est pas un nombre de Fermat (théorème de Gauss-Wantzel). On peut aussi démontrer cette propriété de non-constructibilité sans faire appel aux nombres de Fermat, en utilisant seulement le théorème de Wantzel :
Notons a = 2kπ/7 et x = cos a. Si l'heptagone était constructible alors x serait un nombre constructible. Les angles 3a et 4a ayant pour somme 2kπ, on a
qui, par les formules d'angle multiple, se réécrit
ou encore
Pour k non multiple de 7, le réel x est donc racine de 8x + 4x - 4x - 1, qui est irréductible sur et de degré 3. Ceci est en contradiction avec le résultat établi par Wantzel, qui énonce que le polynôme minimal d'un nombre constructible a toujours pour degré une puissance de 2. Donc cos a n'est pas constructible si k n'est pas multiple de 7, par conséquent l'heptagone n'est pas constructible.
vignette|Construction par intersection de coniques.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
In mathematics, a constructible polygon is a regular polygon that can be constructed with compass and straightedge. For example, a regular pentagon is constructible with compass and straightedge while a regular heptagon is not. There are infinitely many constructible polygons, but only 31 with an odd number of sides are known. Some regular polygons are easy to construct with compass and straightedge; others are not.
En arithmétique, les nombres premiers de Pierpont — nommés ainsi d'après James Pierpont — sont les nombres premiers de la forme 23 + 1, pour u et v deux entiers naturels. On montre facilement que si v = 0 et u > 0, alors u doit être une puissance de 2, c'est-à-dire que 2 + 1 doit être un nombre de Fermat. Par ailleurs, si v > 0 alors u doit être lui aussi non nul (car si v > 0 alors le nombre pair est strictement supérieur à 2 et par conséquent composé) donc le nombre de Pierpont est de la forme 6k + 1.
La neusis (du grec ancien νεῦσις venant de νεύειν neuein « pencher vers »; pluriel : νεύσεις neuseis) est une méthode de construction géométrique utilisée dans l'Antiquité par les mathématiciens grecs dans des cas où les constructions à la règle et au compas étaient impossibles. La construction par neusis consiste à placer un segment de longueur fixée a entre deux courbes données l et m, de telle sorte que la droite support du segment passe par un point fixé P.
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
Explore Division in Extreme and Mean Ratio (DEMR) pour les constructions géométriques et leur importance historique dans l'art et l'architecture.
Déplacez-vous dans la géométrie euclidienne, en mettant l'accent sur la division dans la raison extrême et moyenne (DEMR) et son évolution historique dans une proportion divine.
Explore la construction d'un pentagone régulier en utilisant la méthode d'Euclid et discute des constructions historiques d'Euclid et de Ptolémée.