Concept

Heptagone

Résumé
Un heptagone est un polygone à sept sommets, donc sept côtés et quatorze diagonales. La somme des angles internes d'un heptagone non croisé vaut . Un heptagone régulier est un heptagone dont tous les côtés sont égaux et dont tous les angles internes sont égaux. Il y en a trois : deux étoilés (les heptagrammes réguliers) et un convexe. C'est de ce dernier qu'il s'agit lorsqu'on parle de « l'heptagone régulier ». L'heptagone régulier est le plus petit des polygones réguliers non constructibles à la règle et au compas. Il est cependant possible de réaliser une construction à la règle et au compas si l'on s'aide d'autres outils géométriques ou si la règle peut être graduée (construction par neusis). Il est aussi possible d'en tracer une version approchée, aux erreurs faibles, avec le compas et la règle non graduée. Les angles internes sont tous égaux à . Les angles au centre sont tous égaux à . Si le côté a pour longueur a : le rayon r du cercle circonscrit est égal à le rayon r du cercle inscrit est égal à l'aire est égale à L'heptagone régulier n'est pas constructible à la règle et au compas car le nombre premier 7 n'est pas un nombre de Fermat (théorème de Gauss-Wantzel). On peut aussi démontrer cette propriété de non-constructibilité sans faire appel aux nombres de Fermat, en utilisant seulement le théorème de Wantzel : Notons a = 2kπ/7 et x = cos a. Si l'heptagone était constructible alors x serait un nombre constructible. Les angles 3a et 4a ayant pour somme 2kπ, on a qui, par les formules d'angle multiple, se réécrit ou encore Pour k non multiple de 7, le réel x est donc racine de 8x + 4x - 4x - 1, qui est irréductible sur et de degré 3. Ceci est en contradiction avec le résultat établi par Wantzel, qui énonce que le polynôme minimal d'un nombre constructible a toujours pour degré une puissance de 2. Donc cos a n'est pas constructible si k n'est pas multiple de 7, par conséquent l'heptagone n'est pas constructible. vignette|Construction par intersection de coniques.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.