Hermann Günther GrassmannHermann Günther Grassmann (né le à Stettin et mort le dans la même ville) est un mathématicien et indianiste prussien. Polymathe, il est connu de ses contemporains en tant que linguiste. Physicien, néo-humaniste, érudit mais aussi éditeur, Hermann Grassmann est avec Niels Abel, Évariste Galois et Georg Cantor l’un des grands mathématiciens « malheureux » du . Selon le mot de Albert C. Lewis : Il est considéré aujourd'hui comme le fondateur du calcul tensoriel et de la théorie des espaces vectoriels.
Coordonnées plückeriennesLes coordonnées plückeriennes sont des coordonnées grassmanniennes particulières. Inventées par Julius Plücker, elles ont ensuite été généralisées entre 1832 et 1839 par Hermann Grassmann. On considère la grassmannienne formée par les sous-espaces de dimension d'un espace de dimension , c'est-à-dire la plus simple des grassmanniennes qui ne soit pas un espace projectif. Elle a été identifiée par Plücker comme l'ensemble des droites de l'espace projectif de dimension 3.
Glossary of classical algebraic geometryThe terminology of algebraic geometry changed drastically during the twentieth century, with the introduction of the general methods, initiated by David Hilbert and the Italian school of algebraic geometry in the beginning of the century, and later formalized by André Weil, Jean-Pierre Serre and Alexander Grothendieck. Much of the classical terminology, mainly based on case study, was simply abandoned, with the result that books and papers written before this time can be hard to read.
Corps à un élémentEn mathématiques, et plus précisément en géométrie algébrique, le corps à un élément est le nom donné de manière quelque peu fantaisiste à un objet qui se comporterait comme un corps fini à un seul élément, si un tel corps pouvait exister. Cet objet est noté F1, ou parfois Fun. L'idée est qu'il devrait être possible de construire des théories dans lesquelles les ensembles et les lois de composition (qui constituent les bases de l'algèbre générale) seraient remplacés par d'autres objets plus flexibles.
Schubert varietyIn algebraic geometry, a Schubert variety is a certain subvariety of a Grassmannian, usually with singular points. Like a Grassmannian, it is a kind of moduli space, whose points correspond to certain kinds of subspaces V, specified using linear algebra, inside a fixed vector subspace W. Here W may be a vector space over an arbitrary field, though most commonly over the complex numbers.