G-structure on a manifoldIn differential geometry, a G-structure on an n-manifold M, for a given structure group G, is a principal G-subbundle of the tangent frame bundle FM (or GL(M)) of M. The notion of G-structures includes various classical structures that can be defined on manifolds, which in some cases are tensor fields. For example, for the orthogonal group, an O(n)-structure defines a Riemannian metric, and for the special linear group an SL(n,R)-structure is the same as a volume form.
Fibré principalEn topologie, de manière informelle, un fibré principal sur un espace topologique X est un espace ressemblant localement à un produit de X par un groupe topologique. En particulier, un fibré principal est un espace fibré, mais c'est bien plus encore. Il est muni d'un groupe, le groupe structural, décrivant la manière dont les trivialisations locales se recollent entre elles. La théorie des fibrés principaux recouvre la théorie des fibrés vectoriels, de leurs orientations, de leurs structures riemanniennes, de leurs structures symplectiques, etc.
Image réciproque (géométrie différentielle)En mathématiques, la construction d'une image réciproque pour certains objets est une des opérations de base de la géométrie différentielle. Elle permet d'obtenir un nouvel objet, résultant du « transport » de l'objet initial par une certaine application. On considère ainsi les images réciproques des formes différentielles, des fibrés et de leurs sections et de façon générale tous les objets qui peuvent être composés à droite par l'application de transport.