In mathematics — specifically, in large deviations theory — a rate function is a function used to quantify the probabilities of rare events. Such functions are used to formulate large deviation principle. A large deviation principle quantifies the asymptotic probability of rare events for a sequence of probabilities. A rate function is also called a Cramér function, after the Swedish probabilist Harald Cramér. Rate function An extended real-valued function I : X → [0, +∞] defined on a Hausdorff topological space X is said to be a rate function if it is not identically +∞ and is lower semi-continuous, i.e. all the sub-level sets are closed in X. If, furthermore, they are compact, then I is said to be a good rate function. A family of probability measures (μδ)δ > 0 on X is said to satisfy the large deviation principle with rate function I : X → [0, +∞) (and rate 1 ⁄ δ) if, for every closed set F ⊆ X and every open set G ⊆ X, If the upper bound (U) holds only for compact (instead of closed) sets F, then (μδ)δ>0 is said to satisfy the weak large deviations principle (with rate 1 ⁄ δ and weak rate function I). The role of the open and closed sets in the large deviation principle is similar to their role in the weak convergence of probability measures: recall that (μδ)δ > 0 is said to converge weakly to μ if, for every closed set F ⊆ X and every open set G ⊆ X, There is some variation in the nomenclature used in the literature: for example, den Hollander (2000) uses simply "rate function" where this article — following Dembo & Zeitouni (1998) — uses "good rate function", and "weak rate function". Regardless of the nomenclature used for rate functions, examination of whether the upper bound inequality (U) is supposed to hold for closed or compact sets tells one whether the large deviation principle in use is strong or weak. A natural question to ask, given the somewhat abstract setting of the general framework above, is whether the rate function is unique.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Séances de cours associées (4)
Principe des grandes déviations
Explore le principe des grandes déviations, en se concentrant sur la décomposition exponentielle de la queue et l'analyse de la transformation de Laplace.
Afficher plus
Publications associées (32)

LDP and CLT for SPDEs with transport noise

Lucio Galeati

In this work we consider solutions to stochastic partial differential equations with transport noise, which are known to converge, in a suitable scaling limit, to solution of the corresponding deterministic PDE with an additional viscosity term. Large devi ...
SPRINGER2023

The exploration process of critical Boltzmann planar maps decorated by a triangular O(n) loop model

Aleksandra Korzhenkova

In this paper we investigate pointed (q, g, n)-Boltzmann loop-decorated maps with loops traversing only inner triangular faces. Using peeling exploration Budd (2018) modified to this setting we show that its law in the non-generic critical phase can be cod ...
IMPA2022

Gyrokinetic simulations of turbulence and zonal flows driven by steep profile gradients using a delta-f approach with an evolving background Maxwellian

Laurent Villard, Stephan Brunner, Alberto Bottino, Ben McMillan, Moahan Murugappan

Long global gyrokinetic turbulence simulations are particularly challenging in situations where the system deviates strongly from its initial state and when fluctuation levels are high, for example, in strong gradient regions. For particle-in-cell simulati ...
AIP Publishing2022
Afficher plus
Concepts associés (1)
Principe de grandes déviations
Le principe de grandes déviations, en théorie des probabilités, concerne le comportement asymptotique de queues de suite de loi de probabilités. Quelques premières idées de la théorie ont été données par Laplace et Cramér ; depuis, une définition formelle a été introduite en 1966 par Varadhan. La théorie des grandes déviations formalise les idées heuristiques de la concentration des mesures et généralise la notion de convergence en loi.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.