Concept

Entropie de Hartley

La fonction de Hartley ou entropie de Hartley est une mesure de l'incertitude, introduite par Ralph Hartley en 1928. Si on choisit un échantillon d'un ensemble fini A de façon aléatoire et uniforme, l'information fournie une fois que la sortie est connue est l'entropie de Hartley. Si la base du logarithme est 2, alors l'incertitude se mesure en bits. S'il s'agit du logarithme naturel, alors l'unité est le nat. Hartley quant à lui utilisait le logarithme en base 10, et cette unité d'information est parfois appelée (symbole : hart) en son honneur, ou encore decit. La fonction de Hartley coïncide avec l'entropie de Shannon (aussi bien qu'avec l'entropie de Rényi à tout ordre) dans le cas d'une distribution uniforme. C'est en fait un cas particulier de l'entropie de Rényi puisque: Comme le soulignent Kolmogorov et Rényi (voir George, J. Klirr's "Uncertainty and information", p.423), la fonction de Hartley peut être définie sans introduire la moindre notion de probabilité. La fonction de Hartley ne dépend que du nombre d'éléments dans l'ensemble, et peut donc être vue comme une fonction sur les entiers naturels. Rényi a montré que la fonction Hartley en base 2 est la seule fonction transformant les entiers naturels en nombres réels qui satisfait: (additivité) (monotone) (normalisation) La condition 1 dit que l'incertitude d'un produit cartésien de deux ensembles fini A et B est la somme des incertitudes de A et B. La condition 2 dit qu'un ensemble plus grand a une plus grande incertitude. Nous cherchons à montrer que la fonction de Hartley, log2(n), est la seule fonction transformant les entiers naturels en nombres réels vérifiant les propriétés suivantes : (additivité) (monotonie) (normalisation) Soit ƒ une fonction sur les entiers naturels qui satisfait les 3 propriétés ci-dessus. D'après la propriété d'additivité, nous pouvons montrer que pour tous les entiers n et k, Soit a, b, et t des entiers naturels.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.