Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore le but et le processus de normalisation par lots dans les réseaux neuronaux profonds, en soulignant son importance dans la stabilisation de l'entrée moyenne et la résolution du problème du gradient de fuite.
Explore l'optimisation des modèles d'intégration de mots, y compris la minimisation de la fonction de perte et la descente de gradient, et introduit des techniques comme Fasttext et Byte Pair Encoding.
Couvre les réseaux neuronaux convolutionnels, y compris les couches, les stratégies de formation, les architectures standard, les tâches comme la segmentation sémantique, et les astuces d'apprentissage profond.
Explore les sous-gradients dans les fonctions convexes, mettant l'accent sur les scénarios et les propriétés des subdifférentiels non dissociables mais convexes.
Couvre l'importance de la maintenance préventive pour la détection de la détresse de la chaussée et introduit des concepts d'apprentissage automatique pour les ingénieurs.