In calculus, a one-sided limit refers to either one of the two limits of a function of a real variable as approaches a specified point either from the left or from the right.
The limit as decreases in value approaching ( approaches "from the right" or "from above") can be denoted:
The limit as increases in value approaching ( approaches "from the left" or "from below") can be denoted:
If the limit of as approaches exists then the limits from the left and from the right both exist and are equal. In some cases in which the limit
does not exist, the two one-sided limits nonetheless exist. Consequently, the limit as approaches is sometimes called a "two-sided limit".
It is possible for exactly one of the two one-sided limits to exist (while the other does not exist). It is also possible for neither of the two one-sided limits to exist.
If represents some interval that is contained in the domain of and if is a point in then the right-sided limit as approaches can be rigorously defined as the value that satisfies:
and the left-sided limit as approaches can be rigorously defined as the value that satisfies:
We can represent the same thing more symbolically, as follows.
Let represent an interval, where , and .
In comparison to the formal definition for the limit of a function at a point, the one-sided limit (as the name would suggest) only deals with input values to one side of the approached input value.
For reference, the formal definition for the limit of a function at a point is as follows:
To define a one-sided limit, we must modify this inequality. Note that the absolute distance between and is .
For the limit from the right, we want to be to the right of , which means that , so is positive. From above, is the distance between and . We want to bound this distance by our value of , giving the inequality . Putting together the inequalities and and using the transitivity property of inequalities, we have the compound inequality .
Similarly, for the limit from the left, we want to be to the left of , which means that .
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématiques, un nombre réel est un nombre qui peut être représenté par une partie entière et une liste finie ou infinie de décimales. Cette définition s'applique donc aux nombres rationnels, dont les décimales se répètent de façon périodique à partir d'un certain rang, mais aussi à d'autres nombres dits irrationnels, tels que la racine carrée de 2, π et e.
Le rayon de convergence d'une série entière est le nombre réel positif ou +∞ égal à la borne supérieure de l'ensemble des modules des nombres complexes où la série converge (au sens classique de la convergence simple): Si R est le rayon de convergence d'une série entière, alors la série est absolument convergente sur le disque ouvert D(0, R) de centre 0 et de rayon R. Ce disque est appelé disque de convergence. Cette convergence absolue entraine ce qui est parfois qualifié de convergence inconditionnelle : la valeur de la somme en tout point de ce disque ne dépend pas de l'ordre des termes.
En mathématiques, la droite réelle achevée désigne l'ensemble ordonné constitué des nombres réels auxquels sont adjoints deux éléments supplémentaires : un plus grand élément, noté +∞ et un plus petit élément, noté –∞. Elle est notée [–∞, +∞], R ∪ {–∞, +∞} ou (notation toutefois ambiguë, car la barre signifie généralement "complémentaire" en théorie des ensembles, ou "adhérence" en topologie). Cet ensemble est très utile en analyse, notamment pour généraliser les formules et théorèmes sur les limites sans avoir à effectuer une disjonction des cas, et dans certaines théories de l'intégration.
Couvre les limites à l'infini, l'algèbre et la continuité avec des exemples.
Couvre les critères de convergence pour les séquences, y compris les opérations sur les limites et les séquences définies par récurrence.
Couvre les concepts de limites et de colimits dans la catégorie des espaces topologiques, en mettant l'accent sur la relation entre la colimit et les constructions limites et les adjonctions.
This thesis addresses the question of abandonment in architecture, not in its negative sense of desertion, but as a possibility offered to buildings which have lost their original purpose, which is to say those buildings from social and economic contexts w ...
EPFL2021
It has been shown analytically that Peregrine solitons emerge locally from a universal mechanism in the so-called semiclassical limit of the one-dimensional focusing nonlinear Schrodinger equation. Experimentally, this limit corresponds to the strongly non ...
Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond
Concepts de base de l'analyse réelle et introduction aux nombres réels.
This paper introduces a method for computing points satisfying the second-order necessary optimality conditions for nonconvex minimization problems subject to a closed and convex constraint set. The method comprises two independent steps corresponding to t ...