Introduit des courbes planes projectives, des degrés, des composantes, des multiplicités, des nombres d'intersection, des tangentes et des points multiples, aboutissant à l'énoncé du théorème de Bézout et de ses conséquences.
Introduit le degré de liaison quadratique dans la théorie motivienne des nœuds, couvrant les bases de la théorie des nœuds, la géométrie algébrique et la théorie des intersections.