Résumé
In chemistry, the lattice energy is the energy change upon formation of one mole of a crystalline ionic compound from its constituent ions, which are assumed to initially be in the gaseous state. It is a measure of the cohesive forces that bind ionic solids. The size of the lattice energy is connected to many other physical properties including solubility, hardness, and volatility. Since it generally cannot be measured directly, the lattice energy is usually deduced from experimental data via the Born–Haber cycle. The concept of lattice energy was originally applied to the formation of compounds with structures like rocksalt (NaCl) and sphalerite (ZnS) where the ions occupy high-symmetry crystal lattice sites. In the case of NaCl, lattice energy is the energy change of the reaction Na+ (g) + Cl− (g) → NaCl (s) which amounts to −786 kJ/mol. Some chemistry textbooks as well as the widely used CRC Handbook of Chemistry and Physics define lattice energy with the opposite sign, i.e. as the energy required to convert the crystal into infinitely separated gaseous ions in vacuum, an endothermic process. Following this convention, the lattice energy of NaCl would be +786 kJ/mol. Both sign conventions are widely used. The relationship between the lattice energy and the lattice enthalpy at pressure is given by the following equation: where is the lattice energy (i.e., the molar internal energy change), is the lattice enthalpy, and the change of molar volume due to the formation of the lattice. Since the molar volume of the solid is much smaller than that of the gases, . The formation of a crystal lattice from ions in vacuum must lower the internal energy due to the net attractive forces involved, and so . The term is positive but is relatively small at low pressures, and so the value of the lattice enthalpy is also negative (and exothermic). The lattice energy of an ionic compound depends strongly upon the charges of the ions that comprise the solid, which must attract or repel one another via Coulomb's Law.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.