Concept

Tomographie

Résumé
vignette|Principe de base de la tomographie par projections : les coupes tomographiques transversales S1 et S2 sont superposées et comparées à l’image projetée P. La tomographie est une technique d’, très utilisée dans l’, ainsi qu’en géophysique, en astrophysique et en mécanique des matériaux. Cette technique permet de reconstruire le volume d’un objet à partir d’une série de mesures effectuées depuis l’extérieur de cet objet. La tomographie (racine grecque tomê, coupe, et ainsi représentation en coupes) est une technique qui consiste à reconstruire le volume d’un objet (le corps humain dans le cas de l’imagerie médicale, une structure géologique dans le cas de la géophysique) à partir d’une série de mesures déportées à l’extérieur de l’objet. Ces mesures peuvent être effectuées à la surface même ou à une certaine distance. Le résultat est une reconstruction de certaines propriétés de l’intérieur de l’objet, selon le type d’information que fournissent les capteurs (capture d’une particule, pression acoustique, atténuation d’un faisceau lumineux, différence de vitesse ou de polarisation d’ondes sismique...). L’, par exemple, peut fournir des données anatomiques qui, bien que similaires à ce que l’on obtiendrait en découpant l’objet en fines lamelles et en photographiant ces lamelles, sont en fait une cartographie due à la relaxation (retour à l’état d’équilibre) différentielle des spins de l’atome d’hydrogène dans l’eau - constituant principal des tissus organiques. La tomographie, d’un point de vue mathématique, se décompose en deux étapes. Tout d’abord elle nécessite l'élaboration d'un modèle direct, décrivant suffisamment fidèlement les phénomènes physiques tels qu'ils sont mesurés. Ensuite, on détermine le problème inverse lié au modèle direct ou reconstruction servant à retrouver la distribution tridimensionnelle en se fondant sur le modèle direct. Un exemple simple serait un dérivé du carré magique, où l’on dispose dans un carré trois lignes de trois chiffres, avec la seule condition que les chiffres de 1 à 9 n’apparaissent qu’une fois.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.