Graphe pancycliquevignette| Cycles de longueurs 3,4,5 et 6 dans le graphe d'un octaèdre, montrant qu'il est pancyclique. En théorie des graphes, un graphe pancyclique est un graphe qui contient des cycles de toutes les longueurs de trois jusqu'au nombre de sommets du graphe. Les graphes pancycliques sont une généralisation des graphes hamiltoniens qui ont un cycle qui passe par tous les sommets. Un graphe à sommets est pancyclique si, pour tout entier avec , le graphe contient un cycle de longueur .
Hypercube (graphe)Les hypercubes, ou n-cubes, forment une famille de graphes. Dans un hypercube , chaque sommet porte une étiquette de longueur sur un alphabet , et deux sommets sont adjacents si leurs étiquettes ne diffèrent que d'un symbole. C'est le graphe squelette de l'hypercube, un polytope n-dimensionnel, généralisant la notion de carré (n = 2) et de cube (n = 3). Dans les années 1980, des ordinateurs furent réalisés avec plusieurs processeurs connectés selon un hypercube : chaque processeur traite une partie des données et ainsi les données sont traitées par plusieurs processeurs à la fois, ce qui constitue un calcul parallèle.
Hamiltonian pathIn the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle (or Hamiltonian circuit) is a cycle that visits each vertex exactly once. A Hamiltonian path that starts and ends at adjacent vertices can be completed by adding one more edge to form a Hamiltonian cycle, and removing any edge from a Hamiltonian cycle produces a Hamiltonian path.
Lexique de la théorie des graphesNOTOC Acyclique graphe ne contenant pas de cycle. Adjacence une liste d'adjacence est une structure de données constituée d'un tableau dont le -ème élément correspond à la liste des voisins du -ème sommet. Adjacence une matrice d'adjacence est une matrice carrée usuellement notée , de dimensions , dont chaque élément est égal au nombre d'arêtes incidentes (ayant pour extrémités) aux sommets d'indices et (pour un graphe simple non pondéré, ). Dans le cas d'un graphe pondéré, chaque élément est égal à la somme du poids des arêtes incidentes.