Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Enquêter sur la façon dont le mois de naissance influence le succès des athlètes, analyser l'ensemble de données des athlètes japonais pour explorer les tendances dans les dates de naissance et les professions.
Couvre les champs d'application, les lambdas et les pandas en science des données avec Python, y compris les déclarations imbriquées, la détermination de la portée, les affectations et la manipulation des pandas.
Couvre les outils de science des données, Hadoop, Spark, les écosystèmes des lacs de données, le théorème CAP, le traitement par lots vs. flux, HDFS, Hive, Parquet, ORC, et l'architecture MapReduce.
Présente des outils collaboratifs de science des données comme les carnets Jupyter, Docker et Git, mettant l'accent sur la version des données et la conteneurisation.
Déplacez-vous dans les techniques avancées d'optimisation Spark, en mettant l'accent sur la partition des données, les opérations de shuffle et la gestion de la mémoire.