Corps à un élémentEn mathématiques, et plus précisément en géométrie algébrique, le corps à un élément est le nom donné de manière quelque peu fantaisiste à un objet qui se comporterait comme un corps fini à un seul élément, si un tel corps pouvait exister. Cet objet est noté F1, ou parfois Fun. L'idée est qu'il devrait être possible de construire des théories dans lesquelles les ensembles et les lois de composition (qui constituent les bases de l'algèbre générale) seraient remplacés par d'autres objets plus flexibles.
Variété de drapeaux généraliséeEn mathématiques, une variété de drapeaux généralisée ou tordue est un espace homogène d'un groupe (algébrique ou de Lie) qui généralise les espaces projectifs, les grassmanniennes, les quadriques projectives et l'espace de tous les drapeaux de signature donnée d'un espace vectoriel. La plupart des espaces homogènes de points ou de figures de la géométrie classique sont des variétés de drapeaux généralisées ou des espaces symétriques ou des variétés symétriques (analogues en géométrie algébrique des espaces symétriques), ou leur sont liés.
GrassmannienneEn mathématiques, les grassmanniennes sont des variétés dont les points correspondent aux sous-espaces vectoriels d'un espace vectoriel fixé. On note G(k, n) ou G(K) la grassmannienne des sous-espaces de dimension k dans un espace de dimension n sur le corps K. Ces espaces portent le nom de Hermann Grassmann qui en donna une paramétrisation et sont encore appelés grassmanniennes des « k-plans ». Pour k = 1, la grassmannienne est l'espace projectif associé à l'espace vectoriel.